全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CNN视觉特征的图像检索

DOI: 10.13190/j.jbupt.2015.增.023

Keywords: 卷积神经网络,基于内容的图像检索,特征提取,深度学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

卷积神经网络(CNN)是当前图像识别领域的研究热点,利用预训练的CNN网络提取的图像特征展示出了较强的图像识别能力.主要对比分析了传统视觉特征和CNN视觉特征在基于内容图像检索任务中的性能表现,并指出了一些可以值得深入研究的方向.在两个公开数据库(PascalSentence和PascalVOC2007)的实验尝试表明CNN视觉特征比传统的视觉特征更适用于图像检索.

References

[1]  Edkins J, Graham M. Content-based image retrieval [R]. University of Northumbria at Newcastle: Technical Report, 1999.
[2]  Oliva A, Antonio T. Modeling the shape of the scene: a holistic representation of the spatial envelope [J]. International Journal of Computer Vision, 2001, 42(3): 145-175.
[3]  Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[4]  Dalal N, Bill T. Histograms of oriented gradients for human detection [C]//CVPR. San Diego, USA: IEEE, 2005: 886-893.
[5]  Datta R, Joshi D. Image retrieval: ideas, influences, and trends of the new age [J]. ACM Computing Surveys (CSUR), 2008, 40(2): 5.
[6]  Hinton G E, Ruslan R S. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313(5786): 504-507.
[7]  Cun L, Boser B. Handwritten digit recognition with a back-propagation network [C]//Advances in Neural Information Processing Systems. Denver, Colorado, USA: MIT, 1990: 396-404.
[8]  Alex K, Ilya S. Imagenet classification with deep convolutional neural networks [C]//Advances in Neural Information Processing Systems. Lake Tahoe, Nevada, USA: MIT, 2012: 1097-1105.
[9]  Deng Jia, Dong Wei. Imagenet: a large-scale hierarchical image database [C]//CVPR. Miami, USA: IEEE, 2009: 248-255.
[10]  Ali S R, Hossein A, Josephine S, et al. Cnn features off-the-shelf: an astounding baseline for recognition [C]//CVPRW. Columbus, USA: IEEE, 2014: 512-519.
[11]  Jia Yangqing, Shelhamer E. Caffe: convolutional architecture for fast feature embedding [C]//Proceedings of the ACM International Conference on Multimedia. Orlando, USA: ACM, 2014: 675-678.
[12]  Rashtchian C, Peter Y. Collecting image annotations using Amazons mechanical turk [C]//Proceedings of the NAACL HLT Workshop on Creating Speech and Language Data with Amazons Mechanical Turk. Los Angeles, USA: MIT, 2010: 139-147.
[13]  Everingham M, Gool V L. The pascal visual object classes (voc) challenge [J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
[14]  Hwang S J, Grauman K. Accounting for the relative importance of objects in image retrieval [C]//BMVC. Aberystwyth, UK: BMVA, 2010: 1-12.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133