全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于智能优化的分布式网络流量预测方法

DOI: 10.13190/j.jbupt.2015.增.011, PP. 45-48

Keywords: 流量预测,果蝇优化算法,指数平滑

Full-Text   Cite this paper   Add to My Lib

Abstract:

网络流量预测是网络管理的重要内容,高效的流量预测方法可提高网络管理效率.针对网络流量的时变性等问题,提出了一种基于智能优化的分布式网络流量预测方法.该方法采用果蝇算法优化3次指数平滑预测模型中的平滑因子,对时间窗口内收集到的网络流量进行预测,从而有效地提高3次指数平滑模型下网络流量预测的准确度与效率.仿真实验表明相比传统3次指数平滑预测模型,此方法可解决平滑因子的不确定性所导致的预测结果误差问题,有效提高了网络流量预测精度.

References

[1]  Nakajima J, Kasuya M, Watanabe T. Bayesian analysis of time-varying parameter vector autoregressive model for the Japanese economy and monetary policy [J]. Journal of the Japanese and International Economies, 2011, 25(3): 225-245.
[2]  Sun Y, Wang R, Sun B, et al. Prediction about time series based on updated prediction ARMA model[C]//FSKD 2013. Shenyang: IEEE Press, 2013: 680-684.
[3]  Sang Aimin, Li Sanqi. A predictability analysis of network traffic[C]//INFOCOM 2000. Israel: IEEE Press, 2000: 342-351.
[4]  Kuang J, Zhai D, Wu X, et al. A network traffic prediction method using two-dimensional correlation and single exponential smoothing[C]//ICCT 2013. Guilin: IEEE Press, 2013: 403-406.
[5]  Liao R J, Zheng H B, Grzybowski S, et al. Fuzzy information granulated particle swarm optimization-support vector machine regression for the trend forecasting of dissolved gases in oil-filled transformers[J]. IET Electric Power Applications, 2011, 5(2): 230-237.
[6]  Pan W T. A new fruit fly optimization algorithm: taking the financial distress model as an example [J]. Knowledge Based Systems, 2012, 26: 69-74.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133