全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
测绘学报  2013 

应用稀疏非负矩阵分解聚类实现高光谱影像波段的优化选择

, PP. 0-0

Keywords: 高光谱影像,波段选择,稀疏表示,非负矩阵分解,概率潜语义分析聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对高光谱影像数据高维性、高度相关性和冗余性等特点,本文提出应用稀疏非负矩阵分解聚类实现高光谱影像波段的优化选择。论文通过稀疏非负矩阵分解方法对高光谱影像进行稀疏化表示,同时顾及其可聚类的特性,在保留所选波段物理意义的基础上,得到波段选择后的高光谱影像降维数据。此外,应用稀疏非负矩阵分解聚类的方法对PHI-3高光谱影像进行波段选择的实验分析,应用聚类特征有效性分析波段聚类结果,并采用波段子集的信息量、相关性和可分性三类评价指标来验证方法的有效性。最终,算法实用性评价从运行效率和分类精度两方面证明了基于无监督聚类的稀疏非负矩阵分解可有效地进行高光谱影像的波段选择。

References

[1]  Wang H Z, Angelopoulou E.Average normalized information:a novel entropy-based band selection method[J].Technical Report CS,2004,,:-
[2]  Ifarraguerri A. Visual method for spectral band selection [J].IEEE Geoscience and Remote Sensing Letter,2004,1(2):101-106
[3]  Du Q. Band selection and its impact on target detection and classification in hyperspectral image analysis[J].IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data,Greenbelt,Maryland,October 27-28,2003,:374-377
[4]  Chang C I,Wang Su.Constrained band selection for hyperspectral imagery[J].,2006,44(6):1575-1585
[5]  Mojaradi B.,Emami H., Varshosaz M., and Jamali S. .A novel band selection method for hyperspectral data analysis[J].In Proceeding of International Archives of Photogrammry , Remote Sensing and Spatial Information Sciences,2008,:-
[6]  Qian Y, Yao F, and Jia S..Band selection for hyperspectral imagery using affinity propagation[J].,2009,3(4):213-222
[7]  Scot D W.Multivariate Density Estimation[J].Wiley & Sons,1992,:-
[8]  Olshausen B A, and Field D J.Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J].,1996,381(6583):607-609
[9]  Lee D D,Seung H S.Learning the parts of objects by non-negative matrix factorization[J].,1999,401:788-791
[10]  Hoyer P.Non-negative sparse coding[J].In: Neural Networks for Signal Processing, IEEE Workshop,2002,:-
[11]  Schmidt M. Speech Separation using Non-negative Features and Sparse Non-negative Matrix Factorization[J].Technical Report, 2007,:-
[12]  Boutsidis C, Gallopoulos E.SVD based initialization: a head start for nonnegative matrix factorization[J].,2008,41:1350-1362
[13]  Thomas H. Probabilistic Latent Semantic Indexing[J].Proceedings of the Twenty-Second Annual International SIGIR Conference on Research and Development in Information Retrieval (SIGIR-99),1999,:-
[14]  Ding C, Tao L, Wei P. .On the equivalence between Non-negative Matrix Factorization and Probabilistic Latent Semantic Indexing[J].,2008,52:3913-3927
[15]  Chang C I,Du Q.Estimation of number of spectrally distinct signal sources in hyperspectral imagery[J].,2004,42(3):608-619
[16]  Li Xing,Mao DingShan,Zhang LianPeng.Evaluation Method for Band Selection Algorithm of Hyperspectral Image[J].Geography and GeoInformation Science,2006,22(6):34-37
[17]  Liu Y C,Gao X D,Guo H W,Wu S.. Ensembling clustering validation indices[J].Computer Engineering and Applications,2011,47(19):15-17

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133