全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
测绘学报  2014 

增强形态学建筑物指数应用于高分辨率影像中建筑物提取

, PP. 514-520

Keywords: 高分辨率影像,增强形态学建筑物指数,城市不透水层,形状特征,决策树

Full-Text   Cite this paper   Add to My Lib

Abstract:

分辨影像是城市地物覆盖分析的重要数据基础,本文提出了一种增强的形态学建筑物指数(EMBI),利用该指数和地物的几何形状约束来完成高分辨率建筑物的自动提取。本方法首先提取城市的不透水层特征,然后通过建立建筑物属性与形态学运算之间的关系得到了EMBI特征图像以增强对建筑物的描述,随后结合形状特征(长宽比,面积等)采用决策树分析的方法完成对建筑物的最终提取。为了验证本文提出的方法,利用华盛顿商业街的航空高分辨高光谱HYDICE影像和武汉洪山区的两幅QuickBird影像进行实验,实验的精度对比反映本文算法比MBI算法能获得更好的建筑物提取结果,其总体精度分别提高了7.31%,6.48%,7.83%,从而表明EMBI算法更可靠。

References

[1]  M.Fauvel, Y.Tarabalka, J.A.Bennediktsson, J.Chanussot and J.C.Tilton. Advances in Spectral-Spatial Classification of Hyperspectral Images [J]. Proceedings of IEEE. 2013, 101 (3): 652 - 675.
[2]  X Jin, Davis C H. Automated Building Extraction from High-resolution Satellite Imagery in Urban Areas Using Structural, Contextual, and Spectral Information [J]. EURASIP Journal on Applied Signal Processing. 2005, 14: 2196-2206.
[3]  Lee D S, Shan J, Bethel J S. Class-guided Building Extraction from Ikonos Imagery [J]. Photogrammetric Engineering &Remote Sensing. 2003, 69(2):143-150.
[4]  Huang X, Zhang L. An SVM Ensemble Approach Combining Spectral, Structural, and Semantic Features for the Classi?cation of High-Resolution Remotely Sensed Imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):257-272.
[5]  Huang X, Zhang L. An Adaptive Mean-shift Analysis Approach for Object Extraction and Classification from Urban Hyperspectral Imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(12):4173-4185.
[6]  Huang X, Zhang L, Li P. Classi?cation and Extraction of Spatial Features in Urban Areas Using High Resolution Multispectral Imagery [J]. IEEE Geoscience Remote Sensing Letter. 2007, 4(2): 260-264.
[7]  Fauvel M, Benediktsson J A, Chanussot J, eta. Spectral and Spatial Classi?cation of Hyperspectral Data Using SVMs and Morphological Pro?les [J]. IEEE Trans Geosci Remote Sens. 2008, 46(11): 3804-3814.
[8]  Huang X, Zhang L. A multiscale urban complexity index based on 3D wavelet transform for spectral-spatial feature extraction and classi?cation: an evaluation on the 8-channel WorldView-2 imagery [J]. International Journal of Remote Sensing. 2012, 33(8): 2641-2656.
[9]  Lhomme S, He D C, Weber C, et.al. A New Approach to Building Identification from Very-high-spatial Resolution Images [J]. International Journal of Remote Sensing. 2009, 30(5): 1341-1354.
[10]  Pesaresi M, Gerhardinger A, Kayitakire F. A Robust Built-up Area Presence Index by Anisotropic Rotation-invariant Textural Measure [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2008, 1(3): 180-192.
[11]  Huang X, Zhang L. A Multidirectional and Multiscale Morphological Index for Automatic Building Extraction from Multispectral GeoEye-1 imagery [J]. Photogramm Eng Remote Sens. 2011, 77(7): 721-732.
[12]  Lu D, Hetrick S, Moran E. Impervious Surface Mapping with QuickBird Imagery [J]. International Journal of Remote Sensing. 2011, 32(9): 2519-2533.
[13]  Pesaresi M, Benediktsson J A. A New Approach for the Morphological Segmentation of High-resolution Satellite Imagery [J]. IEEE Trans Geosci Remote Sens. 2001, 39(2): 309-320.
[14]  Epifanio I, Soille P. Morphological Texture Features for Unsupervised and Supervised Segmentations of Natural Landscapes [J]. IEEE Trans Geosci Remote Sens. 2007, 45(4): 1074-1083.
[15]  Benediktsson J A, Pesaresi M, Arnason K. Classi?cation and Feature Extraction for Remote Sensing Images from Urban Areas Based on Morphological Transformations [J]. IEEE Trans Geosci Remote Sens. 2003, 41(9): 1940-1949.
[16]  F. Dell' Acqua, P. Gamba, A. Ferrai, J.A, Palmason, J.A, Benediktsson, and K. Amason. Exploiting Spectral and Spatial Information in Hyperspectral Urban Data with High Resolution [J] .IEEE Geoscience and Remote Sensing Letters. 2004, 1:322-326.
[17]  Benediktsson J A, Palmason J A, Sveinsson J R. Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles[J] . IEEE Transactions on Geoscience and Remote Sensing. 2005, 43(3): 480-491.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133