全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
测绘学报  2015 

不确定性平差模型的平差准则与解算方法

DOI: 10.11947/j.AGCS.2015.20130213, PP. 135-141

Keywords: 不确定度,平差准则,残差,整体最小二乘平差,平差模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

在测量数据的获取过程中,经常存在着不确定性,它们影响着参数估计的可靠性。本文通过把不确定度作为参数融入函数模型,建立了不确定性平差模型。依据残差中不确定性传播规律,确定了残差最大不确定度达到最小的平差准则,利用迭代算法得到了不确定性平差模型的解算方法。通过实例分析了最小二乘平差、整体最小二乘平差和不确定性平差准则下最优解的不同特点,从一个新的角度探讨了不确定性观测数据处理方法,推广了现有的误差理论。

References

[1]  YANG Yuanxi. Some Notes on Uncertainty, Uncertainty Measure and Accuracy in Satellite Navigation[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5): 646-650.(杨元喜. 卫星导航的不确定性、不确定度与精度若干注记[J].测绘学报, 2012, 41(5): 646-650.)
[2]  TAO Benzao. Basic Theory of Uncertainty of Quality Control in GIS[J]. Journal of Institute of Surveying and Mapping, 2000, 17(4): 235-238. (陶本藻. GIS质量控制中不确定度理论[J]. 测绘学院学报, 2000, 17(4): 235-238.)
[3]  XU Zifu, LIU Dong, RUAN Anlu. Review on Uncertainty Measure, Accuracy and Precision[J]. Measuring Technology, 2007, 27(2): 37-39.(许自富, 刘东, 阮安路.不确定度、准确度、精度辨析[J].计量技术, 2007, 27(2): 37-39.)
[4]  Bureau International des Poids et Mesures. JCGM 104:2009.Guide to the Expression of Uncertainty in Measurement[S]. Switzerland:[s.n.], 1993.
[5]  Bureau International des Poids et Mesures. JCGM 100:2008.Guide to the Expression of Uncertainty in Measurement[S].Switzerland:[s.n.], 1995.
[6]  ZOU Yonggang, ZHAI Jingsheng, LIU Yanchun, et al. Seabed DEM Construction Based on Uncertainty[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 964-968. (邹永刚, 翟京生,刘雁春, 等. 利用不确定度的海底数字高程模型构建[J]. 武汉大学学报:信息科学版, 2011, 36(8): 964-968.)
[7]  SHI Yufeng, SHI Wenzhong, JIN Fengxiang. Hybrid Entropy Model of Spatial Data Uncertainty in GIS[J]. Geomatics and Information Science of Wuhan University, 2006, 31(1): 82-85. (史玉峰, 史文中, 靳奉祥. GIS中空间数据不确定性的混合熵模型研究[J]. 武汉大学学报:信息科学版, 2006, 31(1): 82-85.)
[8]  ZHANG Zhenglu, FAN Guoqing, ZHANG Songlin, et al. General Reliability of Measurement[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5): 577-581. (张正禄, 范国庆, 张松林, 等. 测量的广义可靠性研究[J]. 武汉大学学报:信息科学版, 2012, 37(5): 577-581.)
[9]  JIA Shuaidong, ZHANG Lihua, SONG Guoda, et al. A Method for Constructing an Adaptive Grid Digital Depth Model Based on Mean Vertical Uncertaintyof Area[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(3): 454-460. (贾帅东, 张立华, 宋国大, 等. 基于区域平均垂直不确定度的自适应网格水深建模方法[J]. 测绘学报, 2012, 41(3): 454-460.)
[10]  CHEN Wei. Least Uncertainty Estimation Theory With Applications[D]. Wuhan:Wuhan Univercity, 2005. (陈伟. 最小不确定度估计理论及其应用[D]. 武汉:武汉大学, 2005.)
[11]  CHEN Wei, WANG Xinzhou. Least Uncertainty Estimation Theory and Its Applications to Resolving Morbid Problems[J]. Geomatics and Information Science of Wuhan University, 2008,33(7): 752-754. (陈伟, 王新洲. 最小不确定度估计原理及其病态问题解法研究[J]. 武汉大学学报:信息科学版, 2008,33(7): 752-754.)
[12]  WANG Xinzhou. Maximum Possibility Estimation Restricted by Least Uncertainty[J]. Engineering of Surveying and Mapping, 2003(1):5-8. (王新洲. 最小不确定度约束下的极大可能性估计[J]. 测绘工程,2003(1):5-8.)
[13]  TAO Benzao. Estimation of Accuracy and Uncertainty and Its Application[J].Site Investigation Science and Technology,2003,5: 24-27. (陶本藻. 精确度和不确定度估计及应用[J]. 勘察科学技术, 2003,5: 24-27.)
[14]  YANG Yuanxi. Discussion on “A New Measure of Positional Error”[J]. Acta Geodaetica et Cartographica Sinica, 2009,38(3):280-282. (杨元喜.关于“新的点位误差度量”的讨论[J].测绘学报, 2009,38(3):280-282.)
[15]  SCHAFFRIN B, FELUS Y A.A Window on the Future of Geodesy[M].Berlin:Springer, 2005:417-421.
[16]  SCHAFFRIN B, WIESER A. On Weighted Total Least-Squares Adjustment for Linear Regression[J]. Journal of Geodesy. 2008, 82(7): 415-421.
[17]  QIU Weining, QI Gongyu, TIAN Fengrui. An Improved Algorithm of Total Least Squares for Linear Models[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 708-710. (邱卫宁, 齐公玉, 田丰瑞. 整体最小二乘求解线性模型的改进算法[J]. 武汉大学学报:信息科学版, 2010, 35(6): 708-710.)
[18]  KONG Jian, YAO Yibin WU Han. Iterative Method for Total Least-Squares[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 711-714. (孔建, 姚宜斌, 吴寒. 整体最小二乘的迭代解法[J]. 武汉大学学报:信息科学版, 2010, 35(6): 711-714.)
[19]  GHAOUI L E, LEBRET H. Robust Solutions to Least-Squares Problems with Uncertain Data[J].SIAM Journal on Matrix Analysis and Applications,1997,18(4): 1035-1064.
[20]  CHANDRASEKARAN S, GOLUB G H, GU M, et al. Parameter Estimation in the Presence of Bounded Data Uncertainties[J]. 1998, 11(4): 235-252.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133