全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
测绘学报  2015 

多视影像相对方位关系误判检测的置信传播算法

DOI: 10.11947/j.AGCS.2015.20140255, PP. 422-430

Keywords: 相对方位,回路约束,最大生成树,贝叶斯网络,置信传播

Full-Text   Cite this paper   Add to My Lib

Abstract:

场景模糊或者不同场景中的重复纹理会导致影像匹配时产生大量的误匹配点,从而得到误判的相对方位关系.本文引入概率推论方法,提出了一种改进的误判相对方位关系检测算法,利用回路闭合约束构建了基于影像间相对方位关系的贝叶斯网络,推导了贝叶斯网络中的先验概率模型,并利用置信传播算法解算了贝叶斯网络中最大后验概率的求解问题.试验结果表明,利用本文提出的全局一致性约束方法可以有效检测影像间误判的相对方位关系,改善场景重建的结果,并且具有很高的计算效率.

References

[1]  SNAVELY N, SEITZ S M, SZELISKI R. Modeling the World from Internet Photo Collections[J]. International Journal of Computer Vision, 2008, 80(2): 189-210.
[2]  SNAVELY N, SEITZ S M, SZELISKI R. Skeletal Graphs for Efficient Structure from Motion[C]//IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK: IEEE,2008:1-8.
[3]  AGARWAL S, FURUKAWA Y, SNAVELY N, et al. Building Rome in a Day[J]. Communications of the ACM, 2011, 54(10): 105-112.
[4]  KAHL F. Multiple View Geometry and the L∞-norm[C]//Tenth IEEE International Conference on Computer Vision. Beijing: IEEE, 2005, 2: 1002-1009.
[5]  SINHA S N, STEEDLY D, SZELISKI R. A Multi-stage Linear Approach to Structure from Motion[M]//KUTULAKOS K N ed. Trends and Topics in Computer Vision. Berlin:Springer, 2012: 267-281.
[6]  ARIE-NACHIMSON M, KOVALSKY S Z, KEMELMACHER-SHLIZERMAN I, et al. Global Motion Estimation from Point Matches[C]//2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT). Zurich: IEEE, 2012: 81-88.
[7]  MOULON P, MONASSE P, MARLET R. Global Fusion of Relative Motions for Robust, Accurate and Scalable Structure from Motion[C]//2013 IEEE International Conference on Computer Vision (ICCV). Sydney, NSW:IEEE, 2013: 3248-3255.
[8]  MARTINEC D, PAJDLA T. Robust Rotation and Translation Estimation in Multiview Reconstruction[C]//IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN:IEEE, 2007: 1-8.
[9]  WANG Jingxue, ZHU Qing, WANG Weixi. A Dense Matching Algorithm of Multi-view Image Based on the Integrated Multiple Matching Primitives [J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5): 691-698. (王竞雪, 朱庆, 王伟玺. 多匹配基元集成的多视影像密集匹配方法[J]. 测绘学报, 2013, 42(5): 691-698.)
[10]  YUAN Xiuxiao, MING Yang. A Novel Method of Multi-image Matching Using Image and Space Synthesis Information [J].Acta Geodaetica et Cartographica Sinica, 2009, 38(3): 216-222. (袁修孝, 明洋. 一种综合利用像方和物方信息的多影像匹配方法[J]. 测绘学报, 2009, 38(3): 216-222.)
[11]  JIA Fengman, KANG Zhizhong, YU Peng. A SIFT and Bayes Sampling Consensus Method for Image Matching [J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6): 877-883. (贾丰蔓, 康志忠, 于鹏. 影像同名点匹配的 SIFT 算法与贝叶斯抽样一致性检验[J]. 测绘学报, 2013, 42(6): 877-883.)
[12]  GOVINDU V M. Robustness in Motion Averaging[M]// NARAYANAN P J, NAYAR S K, SHUM H Y.Computer Vision:ACCV 2006. Berlin:Springer, 2006: 457-466.
[13]  OLSSON C, ENQVIST O. Stable Structure from Motion for Unordered Image Collections[M]//HEYDEN A, KAHL F.Image Analysis. Berlin:Springer, 2011: 524-535.
[14]  ENQVIST O, KAHL F, OLSSON C. Non-sequential Structure from Motion[C]//2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). Barcelona:IEEE, 2011: 264-271.
[15]  LOWE D G. Distinctive Image Features from Scale-invariant Key Points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[16]  NISTéR D.An Efficient Solution to the Five-point Relative Pose Problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6): 756-770.
[17]  KRUSKAL J B. On the Shortest Spanning Subtree of A Graph and the Traveling Salesman Problem[J]. Proceedings of the American Mathematical Society, 1956, 7(1): 48-50.
[18]  ZACH C, KLOPSCHITZ M, POLLEFEYS M. Disambiguating Visual Relations Using Loop Constraints[C]//2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA:IEEE, 2010: 1426-1433.
[19]  PEARL J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference[M]. San Francisco:Morgan Kaufmann, 1988.
[20]  MACKAY D J C, NEAL R M. Good Codes Based on Very Sparse Matrices[M]//BOYD C ed. Cryptography and Coding. Berlin:Springer, 1995: 100-111.
[21]  KSCHISCHANG F R, FREY B J. Iterative Decoding of Compound Codes by Probability Propagation in Graphical Models[J]. IEEE Journal on Selected Areas in Communications, 1998, 16(2): 219-230.
[22]  MCELIECE R J, MACKAY D J C, CHENG J F. Turbo Decoding as an Instance of Pearl's “Belief Propagation” Algorithm[J]. IEEE Journal on Selected Areas in Communications, 1998, 16(2): 140-152.
[23]  KSCHISCHANG F R, FREY B J, LOELIGER H A. Factor Graphs and the Sum-product Algorithm[J]. IEEE Transactions on Information Theory, 2001, 47(2): 498-519.
[24]  MURPHY K P, WEISS Y, JORDAN M I. Loopy Belief Propagation for Approximate Inference: An Empirical Study[C]//Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence. San Francisco:Morgan Kaufmann Publishers Inc., 1999: 467-475.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133