全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
测绘学报  2015 

Moho面扰动重力梯度信息的提取

DOI: 10.11947/j.AGCS.2015.20140015, PP. 609-615

Keywords: GOCE,Moho,重力梯度提取

Full-Text   Cite this paper   Add to My Lib

Abstract:

在运用重力和重力梯度资料反演Moho面时,关键步骤之一即是从原始测量信号精确提取只包含该层面单一密度信息的扰动(异常)值。本文主要工作有①为减小GEMMAMoho团队的点质量模型计算误差而采用正演精度更高的空间域Tesseroid单元体和频谱域球谐分析与综合方法,并对这两种方法进行了结果对比;②如何合理利用地壳先验模型资料。本文中最后提供了基于GOCO03S模型可以用于后续Moho面反演的重力梯度主对角线分量的全球扰动值,并对所有试验数据进行了讨论和分析。

References

[1]  LUO Zhicai. The Theory and Method for the Determination of Earth Gravity Field from Satellite Gravity Gradient Data[D]. Wuhan: Wuhan Technical University of Surveying and Mapping, 1996. (罗志才. 利用卫星重力梯度数据确定地球重力场的理论和方法[D]. 武汉: 武汉测绘科技大学, 1996.)
[2]  HIRT C, KUHN M, FEATHERSTONE W E, et al. Topographic/Isostatic Evaluation of New-generation GOCE Gravity Field Models[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 2012, 117(B5), DOI: 10.1029/2011JB008878.
[3]  EBBING J, BOUMAN J, FUCHS M, et al. Sensitivity of GOCE Gravity Gradients to Crustal Thickness and Density Variations: Case Study for the Northeast Atlantic Region[M]// MARTI U. Gravity, Geoid and Height Systems. Berlin: Springer, 2014: 291-298.
[4]  EVERTON P B. Ouso dos Dados da Missāo GOCE Para a Caracteriza?āo ea Investiga?āo das Implica?oes na Estrutura de Densidade das Bacias Sedimentares do Amazonas e Solimoes, Brasil[D]. Sāo Paulo: Universidade de Sāo Paulo, 2012.
[5]  áLVAREZ O, GIMENEZ M, BRAITENBERG C, et al. GOCE Satellite Derived Gravity and Gravity Gradient Corrected for Topographic Effect in the South Central Andes Region[J]. Geophysical Journal International, 2012, 190(2): 941-959.
[6]  REGUZZONI M, SAMPIETRO D. Moho Estimation Using GOCE Data: A Numerical Simulation[M]// KENYON S, PACINO M C, MARTI U. Geodesy for Planet Earth. Berlin: Springer, 2012: 205-214.
[7]  YANG Ting, FU Rongshan, HUANG Jinshui. On the Inversion of Effective Elastic Thickness of the Lithosphere with Moho Relief and Topography Data[J]. Chinese Journal of Geophysics, 2012, 55(11): 3671-3680. (杨亭, 傅容珊, 黄金水. 利用 Moho 面起伏及地表地形数据反演岩石圈有效弹性厚度的莫霍地形导纳法 (MDDF)[J]. 地球物理学报, 2012, 55(11): 3671-3680.)
[8]  KE Xiaoping, WANG Yong, XU Houze. Moho Depths Inversion of Qinghai-Tibet Plateau with Variable Density Model[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4): 289-292. (柯小平, 王勇, 许厚泽. 用变密度模型反演青藏高原的莫霍面深度[J]. 武汉大学学报: 信息科学版, 2006, 31(4): 289-292.)
[9]  XING Lelin, SUN Wenke, LI Hui, et al. Present-day Crust Thickness Increasing Beneath the Qinghai-Tibetan Plateau by Using Geodetic Data at Lhasa Station[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(1): 41-44. (邢乐林, 孙文科, 李辉, 等. 用拉萨点大地测量资料检测青藏高原地壳的增厚[J]. 测绘学报, 2011, 40(1): 41-44.)
[10]  ZHANG Chijun, REN Kang. The Undulation between Core and Mantle of Earth from Disturbing Potential[J]. Chinese Journal of Geophysics, 1994, 37(1): 115-119. (张赤军, 任康. 由扰动位确定核幔起伏[J]. 地球物理学报, 1994, 37(1): 115-119.)
[11]  FANG Jian. Global Crustal and Lithospheric Thickness Inversed by Using Satellite Gravity Data[J]. Crustal Deformation and Earthquake, 1999, 19(1): 26-31. (方剑. 利用卫星重力资料反演地壳及岩石圈厚度[J]. 地壳形变与地震, 1999, 19(1): 26-31.)
[12]  SHIN Y H, XU H Z, BRAITENBERG C, et al. Moho Undulations beneath Tibet from GRACE-integrated Gravity Data[J]. Geophysical Journal International, 2007, 170(3): 971-985.
[13]  TENZER R, HAMAYUN, NOVáK P, et al. Global Crust-Mantle Density Contrast Estimated from EGM2008, DTM2008, CRUST2. 0, and ICE-5G[J]. Pure and Applied Geophysics, 2012, 169(9): 1663-1678.
[14]  LASKE G, MASTERS G, MA Z T, et al. Update on CRUST1.0-A 1-degree Global Model of Earth’s Crust[C]// Proceedings of EGU General Assembly Conference Abstracts. Vienna, Austria: [s.n.], 2013: 15-26.
[15]  BAGHERBANDI M, SJBERG L E. Non-isostatic Effects on Crustal Thickness: A Study Using CRUST2.0 in Fennoscandia[J]. Physics of the Earth and Planetary Interiors, 2012, 200-201(1): 37-44.
[16]  REGUZZONI M, SAMPIETRO D. Moho Estimation Using GOCE Data: A Numerical Simulation[M]// KENYON S, PACINO M C, MARTI U. Geodesy for Planet Earth. Berlin: Springer, 2012: 205-214.
[17]  AMANTE C, EAKINS B W. ETOPO1 1 Arc-minute Global Relief Model: Procedures, Data Sources and Analysis[R]. National Geophysical Data Center. Washington D C: NOAA, 2009.
[18]  ZHU L Z. Gradient Modelling with Gravity and DEM[D]. Columbus, Ohio: The Ohio State University, 2007.
[19]  TSOULIS D. A Comparison between the Airy/Heiskanen and the Pratt/Hayford Isostatic Models for the Computation of Potential Harmonic Coefficients[J]. Journal of Geodesy, 2001, 74(9): 637-643.
[20]  MAYER-GVRR T, The GOCO Consortium: The New Combined Satellite only Model GOCO03s[J]. Journal of Geodesy, 2012,87(9): 843-867.
[21]  HU Minzhang, LI Jiancheng, XING Lelin. Global Bathymetry Model Predicted from Vertical Gravity Gradient Anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6): 558-574. (胡敏章, 李建成, 邢乐林. 由垂直重力梯度异常反演全球海底地形模型[J]. 测绘学报, 2014, 43(6): 558-574.)
[22]  LIANG Q, CHEN C, LI Y G. 3D Inversion of Gravity Data in Spherical Coordinates with Application to the GRAIL Data[J]. Journal of Geophysical Research: Planets, 2014, 119(6): 1359-1373.
[23]  TENZER R, BAGHERBANDI M. Reformulation of the Vening Meinesz-Moritz Inverse Problem of Isostasy for Isostatic Gravity Disturbances[J]. International Journal of Geosciences, 2012, 3(5A): 918-929.
[24]  WANG Hansheng, CHENXue, YANGHongzhi. An Iterative Method for Inversion of Deep Large-scale Single Density Interface by Using Gravity Anomaly Data[J]. Chinese Journal of Geophysics, 1993, 36(5): 643-650. (汪汉胜, 陈雪, 杨洪之. 深部大尺度单一密度界面重力异常迭代反演[J]. 地球物理学报, 1993, 36(5): 643-650.)
[25]  SJ?BERG L E. Solving Vening Meinesz-Moritz Inverse Problem in Isostasy[J]. Geophysical Journal International, 2009, 179(3): 1527-1536.
[26]  SJ?BERG L E. On the Isostatic Gravity Anomaly and Disturbance and Their Applications to Vening Meinesz-Moritz Gravimetric Inverse Problem[J]. Geophysical Journal International, 2013, 193(3): 1277-1282.
[27]  GROMBEIN T, SEITZ K, HECK B. Untersuchungen zur Effizienten Berechnung Topographischer Effekte auf den Gradiententensor am Fallbeispiel der Satellitengradiometriemission GOCE[M]. [S.l.]: KIT Scientific Publishing, 2010.
[28]  WILD F, HECK B. Topographic and Isostatic Reductions for Use in Satellite Gravity Gradiometry[C]// XU P L, LIU J N, DERMANIS A. VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy. Berlin: Springer, 2008: 49-55.
[29]  NOVáK P, GRAFAREND E W. The Effect of Topographical and Atmospheric Masses on Spaceborne Gravimetric and Radiometric Data[J]. Studia Geophysica et Geodaetica, 2006, 50(4): 549-582.
[30]  TENZER R, HAMAYUN K, VAJDA P. Global Maps of the CRUST 2.0 Crustal Components Stripped Gravity Disturbances[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 2009, 114(B5), DOI: 10. 1029/2008 JB006016.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133