全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
测绘学报  2015 

一种改进的基于最小生成树的遥感影像多尺度分割方法

DOI: 10.11947/j.AGCS.2015.20140060, PP. 791-796

Keywords: 多尺度分割,最小生成树,最小异质性准则,遥感影像

Full-Text   Cite this paper   Add to My Lib

Abstract:

影像分割是遥感影像面向对象信息提取的基础步骤。基于多特征、多尺度及考虑空间关系的遥感图像分割是主流研究方向。本文基于eCognition软件的多尺度分割思想,引入基于图论的最优化理论,提出了基于最小生成树分割和最小异质性准则的多尺度分割方法。该方法采用相干增强各向异性扩散滤波和最小生成树分割得到初始分割结果,通过最小异质性合并准则同时考虑多波段光谱特性区域形状参数进行区域合并,实现多尺度的影像分割。本次研究选取两景试验影像,对本文方法和eCognition软件的多尺度分割方法开展了目视比较和定量指标评价,结果表明,本文提出的方法是一种有效的影像分割方法,在光谱差异较小区域的细分方面优于eCognition方法。

References

[1]  BAATZ M, SCH?PE A. Multiresolution Segmentation: An Optimization Approach for High Quality Multi-scale Image Segmentation[J]. Journal of Photogrammetry and Remote Sensing, 2000, 58(3-4): 12-23.
[2]  NEUBERT M, HEROLD H, MEINEL G. Assessing Image Segmentation Quality——Concepts, Methods and Application[M]//BLASCHKE T, LANG S, HAY G J. Object-based Image Analysis. Berlin: Springer, 2008: 769-784.
[3]  MARPU P R, NEUBERT M, HEROLD H, et al. Enhanced Evaluation of Image Segmentation Results[J]. Journal of Spatial Science, 2010, 55(1): 55-68.
[4]  WANG M. A Multiresolution Remotely Sensed Image Segmentation Method Combining Rainfalling Watershed Algorithm and Fast Region Merging [C] //Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Beijing: [s.n.], 2008: 1213-1218.
[5]  LIU Jing, LI Peijun. A High Resolution Image Segmentation Method by Combined Structural and Spectral Characteristics[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(5): 466-473. (刘婧, 李培军. 结合结构和光谱特征的高分辨率影像分割方法[J]. 测绘学报, 2014, 43(5): 466-473.)
[6]  WU Zhaocong, HU Zhongwen, ZHANG Qian, et al. On Combining Spectral, Textural and Shape Features for Remote Sensing Image Segmentation[J]. Acta Geodaetica et Cartographica Sinica, 2014, 42(1): 44-50. (巫兆聪, 胡忠文, 张谦, 等. 结合光谱纹理与形状结构信息的遥感影像分割方法[J]. 测绘学报, 2014, 42(1): 44-50.)
[7]  MORTENSEN E N, BARRETT W A. Intelligent Scissors for Image Composition [C]//Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques.New York: [s.n.], 1995: 191-198.
[8]  ZAHN C T. Graph-theoretical Methods for Detecting and Describing Gestalt Clusters[J]. IEEE Transactions on Computers, 1971, C-20(1): 68-86.
[9]  XU Y, UBERBAEHER E C. 2D Image Segmentation Using Minimum Spanning Trees[J]. Image and Vision Computing, 1997, 15(1): 47-57.
[10]  LERSCH J R, IVERSON A E, WEBB B N, et al. Segmentation of Multiband Imagery Using Minimum Spanning Trees [C] //Aerospace/Defense Sensing and Controls, International Society for Optics and Photonics.Orlando, FL: SPIE, 1996: 10-18.
[11]  FELZENSZWALB P F, HUTTENLOEHER D P. Efficient Graph-based Image Segmentation[J]. International Journal of Computer Vision, 2004, 59(2): 167-181.
[12]  WU Z, LEAHY R. An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1101-1113.
[13]  BOYKOV Y Y, JOLLY M P. Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in ND Images [C] //Proceedings of the 8th IEEE International Conference on Computer Vision.Vancouver, B C: IEEE, 2001: 105-112.
[14]  PENG B, ZHANG L, ZHANG D. A Survey of Graph Theoretical Approaches to Image Segmentation[J]. Pattern Recognition, 2013, 46(3): 1020-1038.
[15]  CUI W H, ZHANG Y. An Effective Graph-based Hierarchy Image Segmentation [J].Intelligent Automation & Soft Computing, 2011, 17(7): 969-981.
[16]  WEICKERT J. Anisotropic Diffusion in Image Processing [M].Stuttgart: Teubner, 1998.
[17]  WEICKERT J, SCHARR H. A Scheme for Coherence-enhancing Diffusion Filtering with Optimized Rotation Invariance[J]. Journal of Visual Communication and Image Representation, 2002, 13(1-2): 103-118.
[18]  ZHANG H, FRITTS E J, GOLDMAN S A. Image Segmentation Evaluation: A Survey of Unsupervised Methods[J]. Computer Vision and Image Understanding, 2008, 110(2): 260-280.
[19]  HARALICK R M, SHAPIRO L G. Image Segmentation Techniques[J]. Computer Vision, Graphics, and Image Processing, 1985, 29(1): 100-132.
[20]  ESPINDOLA G M, CAMARA G, REIS I A, et al. Parameter Selection for Region-growing Image Segmentation Algorithms Using Spatial Autocorrelation[J]. International Journal of Remote Sensing, 2006, 27(14): 3035-3040.
[21]  KIM M, MADDEN M, WARNER T. Estimation of Optimal Image Object Size for the Segmentation of Forest Stands with Multispectral IKONOS Imagery[M]//BLASCHKE T, LANG S, HAY G J. Object-based Image Analysis. Berlin: Springer, 2008: 291-307.
[22]  TRIMBLE GERMANY GMBH. eCognition Developer 8.7, 2009[EB/OL].[2011-09-26]. http://www.ecognition.com.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133