全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
测绘学报  2015 

无电离层组合、Uofc和非组合精密单点定位观测模型比较

DOI: 10.11947/j.AGCS.2015.20140161, PP. 734-740

Keywords: 精密单点定位PPP,定位模型,等价性原理,模糊度固定,模糊度精度因子

Full-Text   Cite this paper   Add to My Lib

Abstract:

GNSS精密单点定位技术因其只采用单台接收机就能获得高精度的定位结果而成为近年来的研究热点。精密单点定位通常采用3种模型无电离层组合模型、Uofc模型与非组合模型。本文从模糊度固定的角度详细论述了这3种模型的相互关系,公式推导证明了非组合模型与Uofc模型等价,且都优于无电离层组合模型;与采用等价性原理消去电离层延迟的Uofc模型相比,非组合模型将电离层延迟作为参数求解,能为用户提供附加电离层先验约束的条件,从而方便地转换为电离层加权模型。在固定宽巷模糊度的情况下,采用模糊度精度因子(ADOP)对模糊度的固定效率进行了分析,验证了Uofc模型相对于无电离层组合模型具有噪声小、不损失原始观测信息等优点。而附电离层约束的非组合模型在高精度先验电离层信息约束下能有效提高模糊度固定效率。

References

[1]  COLOMBO O L, SUTTER A W, EVANS A G. Evaluation of Precise, Kinematic GPS Point Positioning[C]// Proceedings of ION GNSS. Long Beach, California: [s.n.], 2004: 21-24.
[2]  KOUBA J, HéROUS P. Precise Point Positioning Using IGS Orbit and Clock Products[J]. GPS Solutions, 2001, 5(2): 12-28.
[3]  GE M, GENDT G, ROTHACHER M, et al. Resolution of GPS Carrier-phase Ambiguities in Precise Point Positioning(PPP) with Daily Observations[J]. Journal of Geodesy, 2008, 82(7): 389-399.
[4]  HAO Ming, WANG Qingliang, CUI Duxin. Study on Fast Convergence Method in Precise Point Positioning[J]. Journal of Geodesy and Geodynamics, 2009, 29(2): 88-91. (郝明, 王庆良, 崔笃信. GPS精密单点定位快速收敛方法研究[J]. 大地测量与地球动力学, 2009, 29(2): 88-91.)
[5]  GAO Y, SHEN X. Improving Ambiguity Convergence in Carrier Phase-based Precise Point Positioning[C]//Proceedings of ION GPS. Salt Lake City: [s.n.], 2001: 1532-1539.
[6]  ABDEL-SALAM M, GAO Y. Precise GPS Atmosphere Sensing Based on Un-differenced Observations[C] // Proceedings of ION GNSS. Long Beach: [s.n.], 2004: 933-940.
[7]  CHEN K, GAO Y. Real-time Precise Point Positioning Using Single Frequency Data[C]//Proceedings of ION GNSS. Long Beach: [s.n.], 2004: 1514-1523.
[8]  SHI C, GU S F, LOU Y D, et al. An Improved Approach to Model Ionospheric Delays for Single-frequency Precise Point Positioning[J]. Advances in Space Research, 2012, 49(12): 1698-1708.
[9]  ZHANG Baocheng, OU Jikun, YUAN Yunbin, et al. Precise Point Positioning Algorithm Based on Original Dual-frequency GPS Code and Carrier-phase Observations and Its Application[J]. Acta Geodaetica et Cartographica Sinica,2010, 39(5): 478-482. (张宝成, 欧吉坤, 袁运斌, 等. 基于GPS双频原始观测值的精密单点定位算法及应用[J]. 测绘学报, 2010, 39(5): 478-482.)
[10]  LI X X, GE M R, ZHANG H P, et al. A Method for Improving Uncalibrated Phase Delay Estimation and Ambiguity-fixing in Real-time Precise Point Positioning[J]. Journal of Geodesy, 2013, 87(5): 405-416.
[11]  SUN Xiaogong. Equal Observation and GPS Differencial Positioning[J]. Acta Geodaetica et Cartographica Sinica, 1992, 21(1): 50-56. (孙效功. 等价观测与GPS差分法定位[J]. 测绘学报, 1992, 21(1): 50-56.)
[12]  SHEN Y Z, XU G C. Simplified Equivalent Represtation of GPS Observation Equations[J]. GPS Solutions, 2007, 12(2): 99-108.
[13]  SHEN Y Z, LI B F, XU G C. Simplified Equivalent Multiple Baseline Solutions with Elevation-dependent Weights[J]. GPS Solutions, 2008, 13(3): 165-171.
[14]  LI B F, TEUNISSEN PJG. GNSS Antenna Array-aided CORS Ambiguity Resolution[J]. Journal of Geodesy, 2014, 88(4): 363-376.
[15]  WEI Ziqing, GE Maorong. Mathmatical Model of GPS Relative Positioning[M]. Beijing: Publishing House of Surveying and Mapping, 1998: 56-82. (魏子卿, 葛茂荣. GPS相对定位的数学模型[M]. 北京: 测绘出版社, 1998: 56-82.)
[16]  SCHAFFRIN B, GRAFAREND E. Generating Classes of Equivalent Linear Models by Nuisance Parameter Elimination[J]. Manuscripta Geodaetica, 1986, 11: 262-271.
[17]  XU G C. GPS Data Processing with Equivalent Observation Equations[J]. GPS Solutions, 2002, 6(1-2): 28-33.
[18]  LI B F, VERHAGEN S, TEUNISSEN PJG. Robustness of GNSS Integer Ambiguity Resolution in the Presence of Atmospheric Biases[J]. GPS Solutions, 2014, 18(2): 283-296.
[19]  LI B F, SHEN Y Z,FENG Y M, et al. GNSS Ambiguity Resolution with Controllable Failure Rate for Long Baseline Network RTK[J]. Journal of Geodesy, 2014, 88(2): 99-112.
[20]  LI B F, VERHAGEN S, TEUNISSEN PJG. GNSS Integer Ambiguity Estimation and Evaluation: LAMBDA and Ps-LAMBDA [C]//China Satellite Navigation Conference (CSNC) 2013 Proceedings. Wuhan: Springer, 2013: 291-301.
[21]  ODIJK D, Teunissen P J G. ADOP in Closed Form for a Hierarchy of Multi-frequency Single-baseline GNSS Models [J]. Journal of Geodesy, 2008, 82(8): 473-492.
[22]  VERHAGEN S, TEUNISSEN PJG,VAN DER MAREL H, et al. GNSS Ambiguity Resolution: Which Subset to Fix?[C]// Proceedings of IGNSS Symposium. Sydney, Australia: [s.n.], 2011.
[23]  TEUNISSEN PJG, JOOSTEN P,TIBERIUS C. Geometry-free Ambiguity Success Rates in Case of Partial Fixing[C]//Proceedings of ION-NTM. San Diego: [s.n.], 1999: 25-27.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133