全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
测绘学报  2015 

空-谱信息与稀疏表示相结合的高光谱遥感影像分类

DOI: 10.11947/j.AGCS.2015.20140207, PP. 775-781

Keywords: 高光谱影像,最小噪声分离,空-谱特征,字典学习,稀疏表示

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统的高光谱遥感影像分类中多依赖光谱信息而忽视空间信息以及提取的特征维数高的问题,提出了一种空-谱信息与稀疏表示相结合的分类算法。首先,利用最小噪声分离对原始影像进行降维,在此基础上,对主成分图上局部影像块内的所有像素进行重组,并用排序的方法得到旋转不变的空-谱特征。然后,对空-谱特征进行监督学习得到字典,并将提取的测试样本的空-谱特征编码到字典中以得到测试样本的稀疏表示。最后,使用支持向量机分类器(SVM)对高光谱影像进行分类。3组高光谱数据试验表明,与传统的分类方法比较,本文方法能有效提高分类精度。

References

[1]  LI Hui, WANG Yunpeng, LI Yan, et al. Numixing of Remote Sensing Images Based on Support Vector Machines and Pairwise Coupling[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(4): 319-323. (李慧, 王云鹏, 李岩, 等. 基于SVM和PWC的遥感影像混合像元分解[J]. 测绘学报, 2009, 38(4): 319-323.)
[2]  HUANG Xin, ZHANG Liangpei, LI Pingxiang. Classification of High Spatial Resolution Remotely Sensed Imagery Based upon Fusion of Multiscale Features and SVM[J]. Journal of Remote Sensing, 2007, 11(1): 48-54. (黄昕, 张良培, 李平湘. 基于多尺度特征融合和支持向量机的高分辨率遥感影像分类[J]. 遥感学报, 2007, 11(1): 48-54.)
[3]  LI Haitao, GU Haiyan, ZHANG Bing, et al. Research on Hyperspectral Remote Sensing Image Classification Based on MNF and SVM[J]. Remote Sensing Information, 2007(5): 12-15. (李海涛, 顾海燕, 张兵, 等. 基于MNF和SVM的高光谱遥感影像分类研究[J]. 遥感信息, 2007(5): 12-15.)
[4]  YANG Guopeng, YU Xuchu, LIU Wei, et al. Research of Hyperspectral Image Classification Based on Support Vector Machine[J]. Computer Engineering and Design, 2008, 29(8): 2029-2032. (杨国鹏, 余旭初, 刘伟, 等. 基于支持向量机的高光谱影像分类研究[J]. 计算机工程与设计, 2008, 29(8): 2029-2032.)
[5]  FAUVEL M, BENEDIKTSSON J A, CHANUSSOT J, et al. Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 3804-3814.
[6]  VELASCO-FORERO S, MANIAN V. Improving Hyperspectral Image Classification Using Spatial Preprocessing[J]. IEEE Transactions on Geoscience and Remote Sensing Letters, 2009, 6(2): 297-301.
[7]  CUI Minshan, PRASAD S, LI Wei, et al. Locality Preserving Genetic Algorithms for Spatial-spectral Hyperspectral Image Classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3): 1688-1697.
[8]  LIU Jixin, SUN Quansen. Multi-scale Fractal Compressed Sensing Remote Sensing Imaging[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6): 846-852. (刘佶鑫, 孙权森. 多尺度分形压缩感知遥感成像方法[J]. 测绘学报, 2013, 42(6): 846-852.)
[9]  WANG Fan, WEI Chao, LIU Zhi, et al. Fusion of Remote Sensing Image with Compressive Sensing Based on FFT Spares[J]. Journal of Geomatics Science and Technology, 2013, 30(1): 58-62. (王番, 魏超, 刘智, 等. 基于FFT稀疏压缩感知域内遥感图像融合[J]. 测绘科学技术学报, 2013, 30(1): 58-62.)
[10]  JIN Jing, ZOU Zhengrong, TAO Chao. Compressed Texton Based High Resolution Remote Sensing Image Classification[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(5): 493-499. (金晶, 邹峥嵘, 陶超. 高分辨率遥感影像的压缩纹理元分类[J]. 测绘学报, 2014, 43(5): 493-499.)
[11]  CHEN Yi, NASRABADI N M, TRAN T D. Simultaneous Joint Sparsity Model for Target Detection in Hyperspectral Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing Letters, 2011, 8(4): 676-680.
[12]  CHEN Yi, NASRABADI N M, TRAN T D. Hyperspectral Image Classification Using Dictionary-based Sparse Representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3973-3985.
[13]  CHEN Yi, NASRABADI N M, TRAN T D. Sparse Representation for Target Detection in Hyperspectral Imagery[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 629-640.
[14]  SONG Xiangfa, JIAO Licheng. Classification of Hyperspectral Remote Sensing Image Based on Sparse Representation and Spectral Information[J]. Journal of Electronics and Information Technology, 2012, 34(2): 268-272. (宋相法, 焦李成. 基于稀疏表示及光谱信息的高光谱遥感图像分类[J]. 电子与信息学报, 2012, 34(2): 268-272.)
[15]  LI Jiayi, ZHANG Hongyan, HUANG Yuancheng, et al. Hyperspectral Image Classification by Nonlocal Joint Collaborative Representation with a Locally Adaptive Dictionary[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3707-3719.
[16]  TARABALKA Y, BENEDIKTSSON J A, CHANUSSOT J. Spectral-spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2973-2987.
[17]  WANG Xiaoling, DU Peijun. Spatial and Spectral Classification Based on Morphology Using SVM[J]. Bulletin of Surveying and Mapping, 2012(12): 18-22. (王晓玲, 杜培军. 基于形态学的空间信息和光谱信息SVM影像分类[J]. 测绘通报, 2012(12): 18-22.)
[18]  TROPP J A, GILBERT A C. Signal Recovery from Random Measurements via Orthogonal Matching Pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
[19]  JIN Yixiong, CHENG Haozhong, YAN Jianyong, et al. Improved Particle Swarm Optimization Method and Its Application in Power Transmission Network Planning[J]. Chinese Journal of Electrical Engineering, 2005, 25(4): 46-50. (金义雄, 程浩忠, 严健勇, 等. 改进粒子群算法及其在输电网规划中的应用[J]. 中国电机工程学报, 2005, 25(4): 46-50.)
[20]  CAMPS-VALLS G, BANDOS T V, ZHOU Dengyong. Semi-supervised Graph-based Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 45(10): 3044-3054.
[21]  FAUVEL M, TARABALKA Y, BENEDIKTSSON J A, et al. Advances in Spectral-spatial Classification of Hyperspectral Images[J]. Proceedings of the IEEE, 2013, 101(3): 652-675.
[22]  CHEN Yi, NASRABADI N M, TRAN T D. Hyperspectral Image Classification via Kernel Sparse Representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 217-231.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133