全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
测绘学报  2015 

主动学习与图的半监督相结合的高光谱影像分类

DOI: 10.11947/j.AGCS.2015.20140221, PP. 919-926

Keywords: 高光谱影像分类,图的半监督学习,主动学习,空-谱特征

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对当前高光谱影像分类时,人工标注样本费时费力以及大量未标记样本未有效利用等问题,提出了一种主动学习与图的半监督相结合的高光谱影像分类方法。首先,将像素的光谱信息与其邻域内的空间信息相结合,利用重排序机制得到一种旋转不变的空谱特征表达。在此基础上,利用主动学习算法选择最不确定性样本(即分类模糊度最大的样本),提交操作者标注得到标记样本集。最后将该标记样本与未标记样本组合,用于图的半监督分类。该算法可保证类别边界样本的选择,利于分类器的边界构造,同时,在较少标记样本情况下,通过引入大量的未标记样本,可以达到较好的分类效果。在3幅真实高光谱影像上的试验表明,该方法可以取得精度较高的分类结果。

References

[1]  PENN B S. Using Simulated Annealing to Obtain Optimal Linear End-member Mixtures of Hyperspectral Data[J]. Computers & Geosciences, 2002, 28(7): 809-817.
[2]  RICHARDS J A. Remote Sensing Digital Image Analysis[M]. Berlin: Springer, 1999.
[3]  LI Hui, WANG Yunpeng, LI Yan, et al. Unmixing of Remote Sensing Images Based on Support Vector Machines and Pairwise Coupling[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(4): 318-323. (李慧, 王云鹏, 李岩, 等. 基于SVM和PWC的遥感影像混合像元分解[J]. 测绘学报, 2009, 38(4): 318-323.)
[4]  JIN Jing, ZOU Zhengrong, TAO Chao. Compressed Texton Based High Resolution Remote Sensing Image Classification[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(5): 493-499. (金晶, 邹峥嵘, 陶超. 高分辨率遥感影像的压缩纹理元分类[J]. 测绘学报, 2014, 43(5): 493-499.)
[5]  GUO Xiujuan, YUAN Yue, FAN Xiaoou. Analysis and Application of Fuzzy Clustering Algorithm[J]. Journal of Jilin Institute of Architecture & Civil Engineering, 2009, 26(4): 79-81. (郭秀娟, 袁月, 范小鸥. 模糊聚类算法分析及应用[J]. 吉林建筑工程学院学报, 2009, 26(4): 79-81.)
[6]  BOVOLO F, BRUZZONE L, CARLIN L. A Novel Technique for Subpixel Image Classification Based on Support Vector Machine[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2983-2999.
[7]  ZHU X J. Semi-supervised Learning Literature Survey[OL/EB]. Wisconsin: University of Wisconsin, 2008.[2013-11-23]. http://pages.cs.wisc.edu/~jerryzhu/research/ssl/semireview.html.
[8]  TUIA D, CAMPS-VALLS G. Semisupervised Remote Sensing Image Classification with Cluster Kernels[J]. IEEE Transactions on Geoscience and Remote Sensing Letters, 2009, 6(2): 224-228.
[9]  LIU Xiaofang, HE Binbin, LI Xiaowen. Classification for Beijing-1 Micro-satellite's Multispectral Image Based on Semi-supervised Kernel FCM Algotithm[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(3): 301-306. (刘小芳, 何彬彬, 李小文. 基于半监督核模糊c-均值算法的北京一号小卫星多光谱图像分类[J]. 测绘学报, 2011, 40(3): 301-306.)
[10]  DOPIDO I, LI J, PLAZA A, et al. Semi-supervised Classification of Hyperspectral Data Using Spectral Unmixing Concepts[C]//Proceedings of the 2012 Tyrrhenian Workshop on Advances in Radar and Remote Sensing. Naples: IEEE, 2012: 353-358.
[11]  BRUZZONE L, CHI M, MARCONCINI M. A Novel Transductive SVM for Semisupervised Classification of Remote-sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3363-3373.
[12]  DóPIDO I, LI J, MARPU P R, et al. Semisupervised Self-learning for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4032-4044.
[13]  CAMPS-VALLS G, BANDOS MARSHEVA T, ZHOU D. Semi-supervised Graph-based Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3044-3054.
[14]  GU Y F, FENG K. L1-graph Semisupervised Learning for Hyperspectral Image Classification[C]//Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich: IEEE, 2012: 1401-1404.
[15]  JOSHI A J, PORIKLI F, PAPANIKOLOPOULOS N. Multi-class Active Learning for Image Classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009: 2372-2379.
[16]  HOTELLING H. Analysis of A Complex of Statistical Variables into Principal Components[J]. Journal of Educational Psychology, 1933, 24(6): 417-441.
[17]  TUIA D, VOLPI M, COPA L, et al. A Survey of Active Learning Algorithms for Supervised Remote Sensing Image Classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 606-617.
[18]  CRAWFORD M M, TUIA D, YANG H L. Active Learning: Any Value for Classification of Remotely Sensed Data?[J]. Proceedings of the IEEE, 2013, 101(3): 593-608.
[19]  LONG Jun, YIN Jianping, ZHU En, et al. An Active Learning Algorithm by Selecting the Most Possibly Wrong-Predicted Instances[J]. Journal of Computer Research and Development, 2008, 45(3): 472-478. (龙军, 殷建平, 祝恩, 等. 选取最大可能预测错误样例的主动学习算法[J]. 计算机研究与发展, 2008, 45(3): 472-478.)
[20]  LAN Yuandong. Research on Theory, Algorithms and Application of Graph-based Semi-supervised Learning[D]. Guangzhou: South China University of Technology, 2012. (兰远东. 基于图的半监督学习理论、算法及应用研究[D]. 广州: 华南理工大学, 2012.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133