全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
测绘学报  2015 

利用GOCE模拟观测反演重力场的Torus法

DOI: 10.11947/j.AGCS.2015.20150110, PP. 965-972

Keywords: GOCE,地球重力场,Torus方法,极空白

Full-Text   Cite this paper   Add to My Lib

Abstract:

在介绍Torus方法反演地球重力场模型的基本原理和方法的基础上,基于圆环面上均匀分布的卫星引力梯度模拟观测值解算了200阶次的地球重力场模型,在无误差情况下,Torus方法解算模型的阶误差RMS小于10-16,验证了该方法的严密性。利用61dGOCE卫星轨道上无误差的模拟引力梯度观测值解算了200阶次的地球重力场模型,分析了格网化误差、极空白对解算精度的影响,迭代3次后,在不考虑低次系数情况下,模型的大地水准面阶误差和累积误差均较小,最大值仅为0.022mm和0.099mm。在沿轨卫星引力梯度模拟数据中加入5mE/Hz1/2的白噪声,基于Torus方法和空域最小二乘法解算了200阶次的地球重力场模型,Torus方法的精度略低于空域最小二乘法的精度,在不考虑低次项的情况下,两种方法解算模型的大地水准面阶误差最大值分别为1.58cm和1.45cm,累积误差最大值分别为6.37cm和5.55cm。但由于采用了二维快速傅里叶技术和块对角最小二乘法,极大地提高了计算效率。本文数值结果说明Torus方法是一种独立有效的方法,可用于GOCE任务海量卫星引力梯度观测值反演重力场的快速解算。

References

[1]  ESA. Gravity Field and Steady-state Ocean Circulation Mission. Reports for Mission Selection of the Four Candidate Earth Explorer Core Missions[R]. ESA Publications Division, ES SP-1233(1), 1999.
[2]  DRINKWATER M R, HAAGMANS R, MUZI D, et al. The GOCE Gravity Mission: ESA's First Core Earth Explorer[R]. Proceedings of the 3rd International GOCE User Workshop, Frascati, Italy, ESA Special Publication, SP-627, ISBN 92-9092-938-3, 2006: 1-8.
[3]  RUMMEL R, VAN GELDEREN M, KOOP R, et al. Spherical Harmonic Analysis of Satellite Gradiometry[M]. Netherlands Geodetic Commission: Publications on Geodesy, New Series 39, 1993.
[4]  KOOP R. Global Gravity Field Modeling Using Satellite Gravity Gradiometry[M]. Netherlands Geodetic Commission: Publications on Geodesy, New Series 38, 1993.
[5]  PAIL R, BRUINSMA S, MIGLIACCIO F, et al. First GOCE Gravity Field Models Derived by Three Different Approaches[J]. Journal of Geodesy, 2011, 85(11): 819-843.
[6]  SNEEUW N J. A Semi-analytical Approach to Gravity Field Analysis from Satellite Observations[D]. Munich, Germany: Institut für Astronomische und Physikalische Geodsie, Technische Universitt München, 2000.
[7]  SNEEUW N J. Space-wise, Time-wise, Torus and Rosborough Representations in Gravity Field Modeling[J]. Space Science Reviews, 2003, 108(1-2): 37-46.
[8]  KLEES R, DITMAR P. The Performance of the Time-wise Semi-analytical Inversion of Satellite Gravity Gradients[M]//DM J, SCHWARZ K P. Vistas for Geodesy in the New Millennium, International Association of Geodesy Symposia. Berlin Heidelberg: Springer, 2001, 125: 253-258.
[9]  SCHUH W D, PAIL R, PLANK G. Assessment of Different Numerical Solution Strategies for Gravity Field Recovery[C]// Proceedings of the 1st International GOCE User Workshop, ESA WPP-188, 87-95, ESA/ESTEC, 2001.
[10]  PAIL R, WERMUTH M. GOCE SGG and SST Quick-look Gravity Field Analysis[J]. Advances in Geosciences, 2003, 1: 5-9.
[11]  PAIL R, PLANK G. GOCE Gravity Field Processing Strategy[J]. Studia Geophysica et Geodaetica, 2004, 48(2): 289-309.
[12]  XU Chen. The Torus-based Semi-analytical Approach in Spaceborne Gravimetry[D]. Calgary: Department of Geomatics Engineering, University of Calgary, 2008.
[13]  KAULA W M. Theory of Satellite Geodesy: Applications of Satellites to Geodesy[M]. Waltham Massachusetts: Blaisdell Publishing Company, 1966.
[14]  SCHRAMA E J O. The Role of Orbit Errors in Processing of Satellite Altimeter Data[M]. Netherlands Geodetic Commission: Publications on Geodesy, New Series 33, 1989.
[15]  PAIL R, PLANK G. Assessment of Three Numerical Solution Strategies for Gravity Field Recovery from GOCE Satellite Gravity Gradiometry Implemented on a Parallel Platform[J]. Journal of Geodesy, 2002, 76(8): 462-474.
[16]  ESA. GOCE HPF: GOCE Level 2 Product Data Handbook[R]. Technical Note, GO-MA-HPF-GS-0110, 2010.
[17]  CAPITAINE N, WALLACE P T, MCCARTHY D D. Expressions to Implement the IAU 2000 Definition of UT1[J]. Astronomy & Astrophysics, 2003, 406(3): 1135-1149.
[18]  PAVLIS N K, HOLMES S A, KENYON S C, et al. An Earth Gravitational Model to Degree 2160: EGM2008[J]. EGU General Assembly, 2008, 10: 13-18.
[19]  ESA. GOCE L1b Products User Handbook[R]. Technical Note, GOCE-GSEG-EOPGTN-06-0137, 2006.
[20]  SNEEUW N J, VAN GELDEREN M. The Polar Gap[M]//SANSó F, RUMMEL R. Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Lecture Notes in Earth Sciences. Berlin Heidelberg: Springer, 1997, 65: 559-568.
[21]  XU Xinyu, LI Jiancheng, JIANG Weiping, et al. Simulation Study for Recovering GOCE Satellite Gravity Model Based on Space-wise LS Method[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(6): 697-702. (徐新禹, 李建成, 姜卫平, 等. 基于空域最小二乘法求解 GOCE 卫星重力场的模拟研究[J]. 测绘学报, 2011, 40(6): 697-702.)
[22]  RUDOLPH S, KUSCHE J, IIK K H. Investigations on the Polar Gap Problem in ESA's Gravity Field and Steady-state Ocean Circulation Explorer Mission (GOCE)[J]. Journal of Geodynamics, 2002, 33(1-2): 65-74.
[23]  XU Xinyu, LI Jiancheng, WANG Zhengtao, et al. The Simulation Research on the Tikhonov Regularization Applied in Gravity Field Determination of GOCE Satellite Mission[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5): 465-470. (徐新禹, 李建成, 王正涛, 等. Tikhonov正则化方法在GOCE重力场求解中的模拟研究[J]. 测绘学报, 2010, 39(5): 465-470.)
[24]  ZHU Guangbin, LI Jiancheng, WEN Hanjiang, et al. Slepian Localized Spectral Analysis of the Determination of the Earth's Gravity Field Using Satellite Gravity Gradiometry Data[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(1): 1-7. (朱广彬, 李建成, 文汉江, 等. 卫星重力梯度数据确定地球重力场的Slepian局部谱分析方法[J]. 测绘学报, 2012, 41(1): 1-7.)
[25]  BAUR O, SNEEUW N, GRAFAREND E W. Methodology and Use of Tensor Invariants for Satellite Gravity Gradiometry[J]. Journal of Geodesy, 2008, 82(4-5): 279-293.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133