全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
测绘学报  2015 

中国大陆GPS速度场的球面小波模型及多尺度特征分析

DOI: 10.11947/j.AGCS.2015.20140141, PP. 1063-1070

Keywords: GPS速度场,DOG球面小波,多尺度估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用1999—2009年间中国大陆共1068个GPS站点在东方向、北方向的速度值,采用DOG球面小波多尺度分析方法,建立了中国大陆东方向、北方向多尺度速度场.球面小波模型的尺度主要根据观测站点的密度来确定,利用检核点上的已知速度与模型速度之间的均方差来评定模型的精度.利用球面小波模型可以更加清晰地表示速度场的大尺度特征和复杂的局部变化特征.站点稠密区域,模型在东方向、北方向上的精度分别为±0.95mm/a、±0.97mm/a,稀疏区域对应的精度分别为±1.32mm/a和±1.30mm/a.

References

[1]  CHENG Pengfei, WEN Hanjiang, CHENG Yingyan, et al. Parameters of the CGCS 2000 Ellipsoid and Comparisons with GRS80 and WGS-84[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(3): 189-194. (程鹏飞, 文汉江, 成英燕, 等. 2000国家大地坐标系椭球参数与GRS80和WGS-84的比较[J]. 测绘学报, 2009, 38(3): 189-194.)
[2]  CHENG Pengfei, CHENG Yingyan, WEN Hanjiang, et al. The User Guide of China Geodetic Coordinate System 2000[M]. Beijing: Surveying and Mapping Press, 2008. (程鹏飞, 成英燕, 文汉江, 等. 2000国家大地坐标系实用宝典[M]. 北京: 测绘出版社, 2008.)
[3]  CHENG Pengfei, CHENG Yingyan, BEI Jinzhong, et al. CGCS2000 Plate Motion Model[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2): 159-167. (程鹏飞, 程英燕, 秘金钟, 等. CGCS2000板块模型构建[J]. 测绘学报, 2013, 42(2): 159-167.)
[4]  LI Qiang, YOU Xinzhao, YANG Shaomin, et al. A Precise Velocity Field of Tectonic Deformation in China as Inferred from Intensive GPS Observations[J]. Science China: Earth Sciences, 2012, 55(5): 695-698. (李强, 游新兆, 杨少敏, 等. 中国大陆构造变形高精度大密度 GPS 监测——现今速度场[J]. 中国科学: 地球科学, 2012, 42(5): 629-632.)
[5]  CHENG Pengfei, WANG Hua, CHENG Yingyan, et al. The Trend of the APRGP Velocity Field and Plates Movement Derived from GPS Data[J]. Science China Physics, Mechanics & Astronomy, 2010, 53(4): 767-772.
[6]  NIU Zhijun, MA Zongjin, CHEN Xinlian, et al. Crustal Movement Observation Network of China[J]. Journal of Geodesy and Geodyanmics, 2002, 22(3): 88-93. (牛之俊, 马宗晋, 陈鑫连, 等. 中国地壳运动观测网络[J]. 大地测量与地球动力学, 2002, 22(3): 88-93.)
[7]  WEI Ziqing, LIU Guangming, WU Fumei. China Geodetic Coordinate System 2000: Velocity Field in Mainland China[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(4): 403-410. (魏子卿, 刘光明, 吴富梅. 2000中国大地坐标系——中国大陆速度场[J]. 测绘学报, 2011, 40(4): 403-410.)
[8]  YANG Yuanxi, ZENG Anmin, WU Fumei. Horizontal Crustal Movement in China Fitted by Adaptive Collocation with Embedded Euler Vector[J]. Science China: Earth Sciences, 2011, 54(12): 1822-1829. (杨元喜, 曾安敏, 吴富梅. 基于欧拉矢量的中国大陆地壳水平运动自适应拟合推估模型[J]. 中国科学: 地球科学, 2011, 41(8): 1116-1125.)
[9]  LIU Jingnan, YAO Yibin, SHI Chuang. Method for Establishing the Speed Field Model of Crustal Movement in China[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 331-336. (刘经南, 姚宜斌, 施闯. 中国地壳运动整体速度场模型的建立方法研究[J]. 武汉大学学报: 信息科学版, 2002, 27(4): 331-336.)
[10]  JIANG Zhihao, ZHANG Peng, BEI Jinzhong, et al. The Model of Crustal Horizontal Movement Based on CGCS2000 Frame[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(6): 471-476. (蒋志浩, 张鹏, 秘金钟, 等. 基于CGCS2000的中国地壳水平运动速度场模型研究[J]. 测绘学报, 2009, 38(6): 471-476.)
[11]  WU Fumei, LIU Guangming, WEI Ziqing. Velocity Field Model of CGCS2000 Based on Euler Vector of Local Area[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 432-435. (吴富梅, 刘光明, 魏子卿. 利用局域欧拉矢量法建立CGCS2000速度场模型[J]. 武汉大学学报: 信息科学版, 2012, 37(4): 432-435.)
[12]  CHAMBODUT A, PANET I, MANDEA M, et al. Wavelet Frames: An Alternative to Spherical Harmonic Representation of Potential Fields[J]. Geophysical Journal International, 2005, 163(3): 875-899.
[13]  PANET I, KUROISHI Y, HOLSCHNEIDER M. Wavelet Modelling of the Gravity Field by Domain Decomposition Methods: An Example over Japan[J]. Geophysical Journal International, 2011, 184(1): 203-219.
[14]  OH H S, KIM D. SpherWave: An R Package for Analyzing Scattered Spherical Data by Spherical Wavelets[J]. R News, 2007, 7(3): 2-7.
[15]  TAPE C, MUSé P, SIMONS M, et al. Multiscale Estimation of GPS Velocity Fields[J]. Geophysical Journal International, 2009, 179(2): 945-971.
[16]  BOGDANOVA I, VANDERGHEYNST P, ANTOINE J P, et al. Stereographic Wavelet Frames on the Sphere[J]. Applied and Computational Harmonic Analysis, 2005, 19(2): 223-252.
[17]  HEISKANEN W A, MORITZ H. Physical Geology[M]. LU Fukang, HU Guoli, Trans. Beijing: Surveying and Mapping Press, 1979. (海斯卡涅, 莫里斯. 物理大地测量学[M]. 卢福康, 胡国理, 译. 北京: 测绘出版社, 1979.)
[18]  ZHANG Shengmao, WU Jianping, ZHOU Kesong, et al. Spherical Triangle Subdivision and Analysis Based on Polyhedron[J]. Computer Engineering and Applications, 2008, 44(9): 16-19. (张胜茂, 吴健平, 周科松. 基于正多面体的球面三角剖分与分析[J]. 计算机工程与应用, 2008, 44(9): 16-19.)
[19]  HANSEN P C. Rank-deficient and Discrete Ill-posed Problems[M]. Philadephia: SIAM, 1998.
[20]  SHAO Jun. Linear Model Selection by Cross-validation[J]. Journal of the American Statistical Association,1993, 88(422): 486-494.
[21]  SHAO Jun. An Asymptotic Theory for Linear Model Selection[J]. Statistica Sinica,1997, 7(2): 221-264.
[22]  GOLUB G H, HEATH M, WAHBA G. Generalized Cross-validation as a Method for Choosing a Good Ridge Parameter[J]. Technometrics, 1979, 21(2): 215-223.
[23]  WEISBERG S. Applied Linear Regression[M]. 5th ed. Hoboken: Wiley,2005.
[24]  TARANTOLA A. Inverse Problem Theory and Methods for Model Parameter Estimation[M]. Philadephia: SIAM, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133