全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
测绘学报  2015 

一种可用于估计全球水汽标高的经验模型

DOI: 10.11947/j.AGCS.2015.20140664, PP. 1085-1091

Keywords: 水汽标高,GSH模型,水汽

Full-Text   Cite this paper   Add to My Lib

Abstract:

水汽标高是一个反映水汽垂直分布特征的参数,也是全球导航卫星系统(globalnavigationsatellitesystem,GNSS)对流层天顶湿延迟改正和GNSS水汽层析中的一个辅助参数.本文对2006—2012年水汽标高的时间序列进行频谱分析,发现水汽标高在时间上呈现出年周期和半年周期变化,因此利用包含年周期和半年周期的三角函数来表达水汽的时变规律,然后利用欧洲中尺度天气预报中心(EuropeanCentreforMedium-rangeWeatherForecasting,ECMWF)的数据在全球1°×1°的格网点上分别拟合了三角函数的系数.通过上述方法首次构建了一个全球适用的水汽标高模型GSH,该模型既体现了水汽标高的时变特性又考虑了其地理差异.以无线电探空数据为参考,GSH具有-0.19km的偏差(bias)和1.81km的均方根误差(rootmeansquareerror,RMSE);以ECMWF数据为参考,GSH具有0.04km的bias和1.52km的RMSE.GSH整体上表现出了比较稳定的精度,可服务于GNSS气象学研究,也可为其他相关气象研究提供水汽标高参考.

References

[1]  BEVIS M, BUSINGER S, HERRING TA, et al. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D14): 15787-15801.
[2]  JACOB D. The Role of Water Vapour in the Atmosphere.A Short Overview from a Climate Modeller's Point of View[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(6-8): 523-527.
[3]  CHEN Junyong. On the Error Analysis for the Remote Sensing of Atmospheric Water Vapor by Ground Based GPS[J]. Acta Geodaetica et Cartographica Sinica, 1998, 27(2): 113-118. (陈俊勇. 地基GPS遥感大气水汽含量的误差分析[J]. 测绘学报, 1998, 27(2): 113-118.)
[4]  ZHANG Baocheng, OU Jikun, YUAN Yunbin, et al. Extracting Precise Atmospheric Propaganda Delays from Multiple Reference Station GPS Networks[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4): 523-528. (张宝成, 欧吉坤, 袁运斌, 等. 多参考站GPS网提取精密大气延迟[J]. 测绘学报, 2012, 41(4): 523-528.)
[5]  QIAN Chuang, HE Changyong, LIU Hui. Regional Precise Troposphere Delay Modeling Based on Spherical Cap Harmonic Analysis[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(3): 248-256. (钱闯, 何畅勇, 刘晖. 基于球冠谐分析的区域精密对流层建模[J]. 测绘学报, 2014, 43(3): 248-256.)
[6]  KOU Leilei, XIANG Maosheng. Effect of Temporal Variation of Atmospheric Refraction on Geosynchronous Circular SAR Focusing Performance[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9): 917-923. (寇蕾蕾, 向茂生. 大气折射率时间变化对地球同步轨道圆迹SAR聚焦性能的影响[J]. 测绘学报, 2014, 43(9): 917-923.)
[7]  LI Chao, WEI Heli, WANG Zhenzhu, et al. Statistical Study on the Scale Height of Atmospheric Water Vapor in Hefei Region[J]. Journal of Atmospheric and Environmental Optics, 2008, 3(2): 115-120. (李超, 魏合理, 王珍珠, 等. 合肥地区大气水汽标高变化特征的统计研究[J]. 大气与环境光学学报, 2008, 3(2): 115-120.)
[8]  ROCKEN C, VAN HOVE T, WARE R. Near Real-time GPS Sensing of Atmospheric Water Vapor[J]. Geophysical Research Letters, 1997, 24(24): 3221-3224.
[9]  TOMASI C. Determination of the Total Precipitable Water by Varying the Intercept in Reitan's Relationship[J]. Journal of Applied Meteorology, 1981, 20(9): 1058-1069.
[10]  REITAN C H. Surface Dew Point and Water Vapor Aloft[J]. Journal of Applied Meteorology, 1963, 2(6): 776-779.
[11]  TOMASI C. Precipitable Water Vapor in Atmospheres Characterized by Temperature Inversions[J]. Journal of Applied Meteorology, 1977, 16(3): 237-243.
[12]  ZHANG Xuewen. The Vertical Distribution Law of Vapor Pressure in Xinjiang, China[J]. Bimonthly of Xinjiang Meteorology, 2002, 25(4): 1-2, 14. (张学文. 新疆水汽压力的铅直分布规律[J]. 新疆气象, 2002, 25(4): 1-2, 14.)
[13]  SCHVLER T. The TropGrid2 Standard Tropospheric Correction Model[J]. GPS Solutions, 2014, 18(1): 123-131.
[14]  YU Shengjie, LIU Lintao, LIANG Xinghui. Influence Analysis of Constraint Conditions on GPS Water Vapor Tomography[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5): 492-496. (于胜杰, 柳林涛, 梁星辉. 约束条件对GPS水汽层析解算的影响分析[J]. 测绘学报, 2010, 39(5): 492-496.)
[15]  FLORES A, RUFFINI G, RIUS A. 4D Tropospheric [JP]Tomography Using GPS Slant Wet Delays[J]. Annales Geophysicae, 2000, 18(2): 223-234.
[16]  FLORES A, DE ARELLANO J V G, GRADINARSKY L P,[JP] et al. Tomography of the Lower Troposphere Using a Small Dense Network of GPS Receivers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2): 439-447.
[17]  DAVIS J L, HERRING T A, SHAPIRO I I, et al. Geodesy[JP] by Radio Interferometry: Effects of Atmospheric Modeling Errors on Estimates of Baseline Length[J]. Radio Science, 1985, 20(6): 1593-1607.
[18]  WEXLER A. Vapor Pressure Formulation [JP]for Water in the[JP] Range 0 to 100°C: A Revision[J]. Journal of Research of the National Bureau of Standards-A: Physics and Chemistry, 1976, 80A(5-6): 775-785.
[19]  WEXLER A. Vapor Pressure Formulation for Ice[J]. Journal[JP] of Research of the National Bureau of Standards-A: Physics and Chemistry, 1977, 81A(1): 5-20.
[20]  LAGLER K, SCHINDELEGGER M, B?HM J, et al. [JP]GPT2: Empirical Slant Delay Model for Radio Space Geodetic Techniques[J]. Geophysical Research Letters, 2013, 40(6): 1069-1073.
[21]  YAO Y B, ZHANG B, XU C Q, et al. Improved One-multi-parameter Models that Consider Seasonal and Geographic Variations for Estimating Weighted Mean Temperaturein Ground-based GPS Meteorology[J]. Journal of Geodesy, 2014, 88(3): 273-282.
[22]  LI W, YUAN Y B, OU J K, et al. A New Global Zenith Tropospheric Delay Model IGGtrop for GNSS Applications[J]. Chinese Science Bulletin, 2012, 57(17): 2132-2139.
[23]  YAO Yibin, HE Changyong, ZHANG Bao, et al. A New Global Zenith Tropospheric Delay Model GZTD[J]. Chinese Journal of Geophysics, 2013, 56(7): 2218-2227. (姚宜斌, 何畅勇, 张豹, 等. 一种新的全球对流层天顶延迟模型GZTD[J]. 地球物理学报, 2013, 56(7): 2218-2227.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133