Sorby H C. The structure and origin of limestones[J]. Proceedings of the Geological Society of London, 1879, 35:56-95.
[2]
Richter D K. Classification of coated grains:discussion[M]//Peryt T M. Coated Grains. Berlin, Heidelberg:Springer-Verlag, 1983:7-8.
[3]
Flügel E. Microfacies of Carbonate Rocks:Analysis, Interpretation and Application[M]. Berlin, Heidelberg:Springer-Verlag, 2004:1-976.
[4]
Tucker M E, Wright V P. Carbonate Sedimentology[M]. USA:Wiley-Blackwell, 1990:1-496.
[5]
Opdyke B N, Wilkinson B H. Paleolatitude distribution of Phanerozoic marine ooids and cements[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1990, 78(1/2):135-148.
[6]
Heydari E, Moore C H. Paleoceanographic and paleoclimatic controls on ooid mineralogy of the Smackover Formation, Mississippi salt basin-implications for Late Jurassic seawater composition[J]. Journal of Sedimentary Research, 1994, 64(1):101-114.
[7]
Ma Y S, Guo X S, Guo T L, et al. The Puguang gas field:new giant discovery in the mature Sichuan Basin, southwest China[J]. AAPG Bulletin, 2007, 91(5):627-643.
[8]
Duguid S M A, Kyser T K, James N P, et al. Microbes and ooids[J]. Journal of Sedimentary Research, 2010, 80(3):236-251.
[9]
Gaffey S J. Formation and infilling of pits in marine ooid surfaces[J]. Journal of Sedimentary Petrology, 1983, 53(1):193-208.
[10]
Folk R L, Lynch F L. Organic matter, putative nannobacteria and the formation of ooids and hardgrounds[J]. Sedimentology, 2001, 48(2):215-229.
[11]
Wright D T, Oren A. Nonphotosynthetic bacteria and the formation of carbonates and evaporites through time[J]. Geomicrobiology Journal, 2005, 22(1/2):27-53.
[12]
Plee K, Ariztegui D, Martini R, et al. Unravelling the microbial role in ooid formation-results of an in situ experiment in modern freshwater Lake Geneva in Switzerland[J]. Geobiology, 2008, 6(4):341-350.
[13]
Pacton M, Ariztegui D, Wacey D, et al. Going nano:a new step toward understanding the processes governing freshwater ooid formation[J]. Geology, 2012, 40(6):547-550.
[14]
Summons R E, Bird L R, Gillespie A L, et al. Lipid biomarkers in ooids from different locations and ages:evidence for a common bacterial flora[J]. Geobiology, 2013, 11(5):420-436.
[15]
梅冥相. 鲕粒成因研究的新进展[J]. 沉积学报, 2012, 30(1):20-32. [Mei Mingxiang. Brief introduction on new advances on the origin of ooids[J]. Acta Sedimentologica Sinica, 2012, 30(1):20-32.]
[16]
Eardley A J. Sediments of Great Salt Lake, Utah[J]. AAPG Bulletin, 1938, 22(10):1305-1411.
[17]
Carozzi A V. Cerebroid oolites[J]. Transactions of the Illinois State Academy of Science, 1962, 55(3/4):238-249.
[18]
Shearman D J, Twyman J, Zand Karimi M. The genesis and diagenesis of oolites[J]. Proceedings of the Geologists' Association, 1970, 81(3):561-575.
[19]
Kahle C F. Ooids from Great Salt Lake, Utah, as an analogue for the genesis and diagenesis of ooids in marine limestones[J]. Journal of Sedimentary Research, 1974, 44(1):30-39.
[20]
Sandberg P A. New interpretations of Great Salt Lake ooids and of ancient non-skeletal carbonate mineralogy[J]. Sedimentology, 1975, 22(4):497-537.
[21]
Simone L. Ooids:a review[J]. Earth-Science Reviews, 1980, 16:319-355.
[22]
Marshall J F, Davies P J. High-magnesium calcite ooids from the Great Barrier Reef[J]. Journal of Sedimentary Petrology, 1975, 45(1):285-291.
[23]
Milliman J D, Barretto H T. Relict magnesian calcite oolite and subsidence of the Amazon shelf[J]. Sedimentology, 1975, 22(1):137-145.
[24]
Davies P J, Martin K. Radial aragonite ooids, Lizard Island, Great Barrier Reef, Queensland, Australia[J]. Geology, 1976, 4(2):120-122.
[25]
Halley R B. Ooid fabric and fracture in the Great Salt Lake and the geologic record[J]. Journal of Sedimentary Research, 1977, 47(3):1099-1120.
[26]
Medwedeff D A, Wilkinson B H. Cortical Fabrics in Calcite and Aragonite Ooids[M]//Peryt T M. Coated Grains.Berlin Heidelberg:Springer, 1983:109-115.
[27]
Heller P L, Komar P D, Pevear D R. Transport processes in ooid genesis[J]. Journal of Sedimentary Research, 1980, 50(3):943-951.
[28]
Wilkinson B H, Landing E. "Eggshell diagenesis" and primary radial fabric in calcite ooids[J]. Journal of Sedimentary Research, 1978, 48(4):1129-1138.
[29]
Deelman J C. Experimental ooids and grapestones:carbonate aggregates and their origin[J]. Journal of Sedimentary Research, 1978, 48(2):503-512.
[30]
Chow N, James N P. Facies-specific, calcitic and bimineralic ooids from Middle and Upper Cambrian platform carbonates, western Newfoundland, Canada[J]. Journal of Sedimentary Research, 1987, 57(5):907-921.
[31]
Friedman G M, Amiel A J, Braun M, et al. Generation of carbonate particles and laminites in algal mats:example from sea-marginal hypersaline pool, Gulf of Aqaba, Red Sea[J]. AAPG Bulletin, 1973, 57(3):541-557.
[32]
Strasser A. Ooids in Purbeck limestones (lowermost Cretaceous) of the Swiss and French Jura[J]. Sedimentology, 1986, 33(5):711-727.
[33]
Berner R A. The role of magnesium in the crystal growth of calcite and aragonite from sea water[J]. Geochimica Et Cosmochimica Acta, 1975, 39(4):489-494, IN3, 495-504.
[34]
Sandberg P A. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy[J]. Nature, 1983, 305(5929):19-22.
[35]
Hardie L A. Secular variation in seawater chemistry:an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m. y.[J]. Geology, 1996, 24(3):279-283.
[36]
Lowenstein T K, Hardie L A, Timofeeff M N, et al. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines[J]. Geology, 2003, 31(10):857-860.
[37]
Berner R A, Kothavala Z. Geocarb III:A revised model of atmospheric CO2 over Phanerozoic time[J]. American Journal of Science, 2001, 301(2):182-204.
[38]
Bathurst R G C. Carbonate Sediments and Their Diagenesis[M]. Amsterdam:Elsevier Science, 1972:1-620.
[39]
Loreau J P, Purser B H. Distribution and Ultrastructure of Holocene Ooids in the Persian Gulf [M]//Purser B H. The Persian Gulf. New York:Springer-Verlag, 1973:279-328.
[40]
Scholle P A, Kinsman D J. Aragonitic and high-Mg calcite caliche from the Persian Gulf-a modern analog for the Permian of Texas and New Mexico[J]. Journal of Sedimentary Research, 1974, 44(3):904-916.
[41]
Lippmann F. Sedimentary Carbonate Minerals[M]. New York:Springer-Verlag, 1973:1-228.
[42]
Wilkinson B H, Owen R M, Carroll A R. Submarine hydrothermal weathering, global eustasy, and carbonate polymorphism in Phanerozoic marine oolites[J]. Journal of Sedimentary Research, 1985, 55(2):171-183.
[43]
Algeo T J, Watson B A. Calcite, aragonite, and bimineralic ooids in the Missourian (Upper Pennsylvanian) strata of Kansas:Stratigraphic and geographic patterns of variation[M]//Pausé P H, Candelaria M P. Carbonate Facies and Sequence Stratigraphy:Practical Applications of Carbonate Models. USA:PBGC-SEPM Publication, 1995:141-173.
[44]
Major R P, Halley R B, Lukas K J. Cathodoluminescent bimineralic ooids from the Pleistocene of the Florida continental shelf[J]. Sedimentology, 1988, 35(5):843-855.
[45]
Li F, Yan J X, Algeo T, et al. Paleoceanographic conditions following the end-Permian mass extinction recorded by giant ooids (Moyang, South China)[J]. Global and Planetary Change, 2013, 105:102-120.
[46]
Lehrmann D J, Minzoni M, Li X W, et al. Lower Triassic oolites of the Nanpanjiang Basin, south China:facies architecture, giant ooids, and diagenesis—implications for hydrocarbon reservoirs[J]. AAPG Bulletin, 2012, 96(8):1389-1414.
[47]
Land L S, Behrens E W, Frishman S A. The ooids of Baffin Bay, Texas[J]. Journal of Sedimentary Research, 1979, 49(4):1269-1277.
[48]
Popp B N, Wilkinson B H. Holocene lacustrine ooids from Pyramid Lake, Nevada[M]//Peryt T M. Coated Grains. Berlin, Heidelberg:Springer-Verlag, 1983:142-153.
[49]
Rankey E C, Reeder S L. Holocene ooids of Aitutaki Atoll, Cook Islands, South Pacific[J]. Geology, 2009, 37(11):971-974.
[50]
Assereto R, Folk R L. Brick-like texture and radial rays in Triassic pisolites of Lombardy, Italy:a clue to distinguish ancient aragonitic pisolites[J]. Sedimentary Geology, 1976, 16(3):205-222.
[51]
Tucker M E. Calcitic, aragonitic and mixed calcitic-aragonitic ooids from the mid-Proterozoic Belt Supergroup, Montana[J]. Sedimentology, 1984, 31(5):627-644.
[52]
Tucker M E. Calcitized aragonite ooids and cements from the Late Precambrian Biri Formation of southern Norway[J]. Sedimentary Geology, 1985, 43(1/2/3/4):67-84.
[53]
Tewari V C, Tucker M E. Ediacaran Krol carbonates of the lesser Himalaya, India:stromatolitic facies, depositional environment and diagenesis[M]//Tewari V, Seckbach J. STROMATOLITES:Interaction of Microbes with Sediments. Netherlands:Springer, 2011, 18:133-156.
[54]
Wilkinson B H, Buczynski C, Owen R M. Chemical control of carbonate phases; implications from Upper Pennsylvanian calcite-aragonite ooids of southeastern Kansas[J]. Journal of Sedimentary Research, 1984, 54(3):932-947.
[55]
Richter D K. Calcareous ooids:a synopsis[M]//Peryt T M. Coated Grains. Berlin, Heidelberg:Springer-Verlag, 1983:71-99.
[56]
Brand U, Veizer J. Origin of coated grains:trace element constraints[M]//Peryt T M. Coated Grains. Berlin, Heidelberg:Springer-Verlag, 1983:9-26.
[57]
Lohmann K C, Meyers W J. Microdolomite inclusions in cloudy prismatic calcites:a proposed criterion for former high-magnesium calcites[J]. Journal of Sedimentary Research, 1977, 47(3):1078-1088.
[58]
Richter K D, Füchtbauer H. Ferroan calcite replacement indicates former magnesian calcite skeletons[J]. Sedimentology, 1978, 25(6):843-860.
[59]
Swirydczuk K. Mineralogical control on porosity type in Upper Jurassic Smackover ooid grainstones, southern Arkansas and northern Louisiana[J]. Journal of Sedimentary Research, 1988, 58(2):339-347.
[60]
Kinsman D J J. Interpretation of Sr2+ concentrations in carbonate minerals and rocks[J]. Journal of Sedimentary Petrology, 1969, 39(2):486-508.
[61]
Heydari E, Snelling R D, Dawson W C, et al. Ooid Mineralogy and Diagenesis of the Pitkin Formation, North-Central Arkansas[M]//Keith B D, Zuppann C W. AAPG Studies in Geology. Mississippian oolites and modern analogs. American Association of Petroleum Geologists, 1993:175-184.
[62]
Kidder D L, Hall S. Petrology and diagenetic evolution of Neoproterozoic ooids (Libby Formation, western Montana, U. S. A.)[J]. Precambrian Research, 1993, 63(1/2):83-96.
[63]
Singh U. Ooids and cements from the Late Precambrian of the Flinders Ranges, South Australia[J]. Journal of Sedimentary Petrology, 1987, 57(1):117-127.
[64]
Oomori T, Kaneshima H, Maezato Y. Distribution coefficient of Mg2+ ions between calcite and solution at 10-50℃[J]. Marine Chemistry, 1987, 20(4):327-336.
[65]
Swett K, Knoll A H. Marine pisolites from Upper Proterozoic carbonates of East Greenland and Spitsbergen[J]. Sedimentology, 1989, 36(1):75-93.
[66]
Mackenzie F T, Pigott J D. Tectonic controls of Phanerozoic sedimentary rock cycling[J]. Journal of the Geological Society, 1981, 138(2):183-196.
[67]
Morse J W, Wang Q W, Tsio M Y. Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater[J]. Geology, 1997, 25(1):85-87.
[68]
Morse J W, Arvidson R S, Lüttge A. Calcium carbonate formation and dissolution[J]. Chemical Reviews, 2007, 107(2):342-381.
[69]
Stanley S M, Hardie L A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 144(1/2):3-19.
[70]
Ries J B. Review:geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification[J]. Biogeosciences, 2010, 7(9):2795-2849.
[71]
Stanley S M, Hardie L A. Hypercalcification:paleontology links plate tectonics and geochemistry to sedimentology[J]. GSA Today, 1999, 9(2):1-7.
[72]
Lowenstein T K, Timofeeff M N, Brennan S T, et al. Oscillations in Phanerozoic seawater chemistry:evidence from fluid inclusions[J]. Science, 2001, 294(5544):1086-1088.
[73]
Kiessling W, Aberhan M, Villier L. Phanerozoic trends in skeletal mineralogy driven by mass extinctions[J]. Nature Geoscience, 2008, 1(8):527-530.
[74]
Liu J B, Zhan R B, Dai X, et al. Demise of Early Ordovician oolites in South China:Evidence for paleoceanographic changes before the GOBE[M]//Gutiérrez-Marco J C, Rábano I, García-Bellido D. Ordovician of the World. Cuadernos del Museo Geominero, 2011:309-317.
[75]
Payne J L, Turchyn A V, Paytan A, et al. Calcium isotope constraints on the end-Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19):8543-8548.
[76]
H?nisch B, Ridgwell A, Schmidt D N, et al. The geological record of ocean acidification[J]. Science, 2012, 335(6072):1058-1063.
[77]
Li F, Yan J X, Chen Z Q, et al. Global oolite deposits across the Permian-Triassic boundary:A synthesis and implications for palaeoceanography immediately after the end-Permian biocrisis[J]. Earth-Science Reviews, 2015, doi:10.1016/j.earscirev.2014,12.006.