全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
沉积学报  2015 

鲕粒原生矿物识别及对海水化学成分变化的指示意义

DOI: 10.14027/j.cnki.cjxb.2015.03.008, PP. 500-511

Keywords: 碳酸盐鲕粒,鲕粒原生矿物,Mg/Ca,碳酸盐饱和度

Full-Text   Cite this paper   Add to My Lib

Abstract:

鲕粒是碳酸盐沉积过程中一类非常特殊的颗粒类型,为研究当时的沉积背景、水动力条件、气候环境,甚至储层特征提供了重要线索。然而,鲕粒的矿物组成及控制因素问题,长期受到忽视。组成鲕粒的原生矿物类型在地质历史时期呈周期性变化,在显生宙表现为三个以文石和高镁方解石占主导的时期以及两个以低镁方解石占主导的时期,这也被称作“文石海”和“方解石海”时期。原生矿物的组成,制约着鲕粒的纹层结构、保存程度以及成岩特征,还蕴含着海水化学成分变化的线索。鲕粒原生矿物识别主要依据①原生纹层结构;②保存程度;③微量元素浓度,尤其是Sr-Mg的浓度。文石质鲕粒受文石不稳定性的影响,原生结构保存程度较差;一般保存有典型的文石残余纹层结构(例如砖砌结构、溶解变形结构以及偏心结构等);在封闭成岩环境下原生矿物为文石质的鲕粒Sr浓度往往大于2000ppm;纹层结构主要为切线状(占主导)和放射状。方解石质鲕粒包括低镁方解石和高镁方解石两种类型低镁方解石为稳定矿物,原生结构一般保存良好。尽管高镁方解石也为亚稳定矿物,但成岩转换后的保存程度好于文石。两者Sr含量一般均低于1000ppm,Mg含量一般在0~20mol%MgCO3(两者以4mol%MgCO3为界)。高镁方解石受成岩作用影响,在纹层中往往保留有微粒白云石包裹体;海相地层中保存的方解石质鲕粒为放射状或同心—放射状结构。另外还存在一类由两种矿物共同构成的双矿物鲕粒,可以通过分析两类纹层在结构和保存特征上的差异进行区分。鲕粒原生矿物成分随时间的波动变化受到海水化学条件,尤其是Mg/Ca比值,大气二氧化碳分压以及碳酸盐饱和度的控制。Mg/Ca比值的波动决定着鲕粒原生矿物类型的长期变化规律。一些突发性事件可能会扰动(区域)短时间尺度下鲕粒原生矿物的组成,造成鲕粒原生矿物的转换。通过研究碳酸盐鲕粒原生矿物特征以及控制因素进而了解海水的化学特征,是独立于古生物学和地球化学分析之外的一种较为可靠的沉积学方法。

References

[1]  Sorby H C. The structure and origin of limestones[J]. Proceedings of the Geological Society of London, 1879, 35:56-95.
[2]  Richter D K. Classification of coated grains:discussion[M]//Peryt T M. Coated Grains. Berlin, Heidelberg:Springer-Verlag, 1983:7-8.
[3]  Flügel E. Microfacies of Carbonate Rocks:Analysis, Interpretation and Application[M]. Berlin, Heidelberg:Springer-Verlag, 2004:1-976.
[4]  Tucker M E, Wright V P. Carbonate Sedimentology[M]. USA:Wiley-Blackwell, 1990:1-496.
[5]  Opdyke B N, Wilkinson B H. Paleolatitude distribution of Phanerozoic marine ooids and cements[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1990, 78(1/2):135-148.
[6]  Heydari E, Moore C H. Paleoceanographic and paleoclimatic controls on ooid mineralogy of the Smackover Formation, Mississippi salt basin-implications for Late Jurassic seawater composition[J]. Journal of Sedimentary Research, 1994, 64(1):101-114.
[7]  Ma Y S, Guo X S, Guo T L, et al. The Puguang gas field:new giant discovery in the mature Sichuan Basin, southwest China[J]. AAPG Bulletin, 2007, 91(5):627-643.
[8]  Duguid S M A, Kyser T K, James N P, et al. Microbes and ooids[J]. Journal of Sedimentary Research, 2010, 80(3):236-251.
[9]  Gaffey S J. Formation and infilling of pits in marine ooid surfaces[J]. Journal of Sedimentary Petrology, 1983, 53(1):193-208.
[10]  Folk R L, Lynch F L. Organic matter, putative nannobacteria and the formation of ooids and hardgrounds[J]. Sedimentology, 2001, 48(2):215-229.
[11]  Wright D T, Oren A. Nonphotosynthetic bacteria and the formation of carbonates and evaporites through time[J]. Geomicrobiology Journal, 2005, 22(1/2):27-53.
[12]  Plee K, Ariztegui D, Martini R, et al. Unravelling the microbial role in ooid formation-results of an in situ experiment in modern freshwater Lake Geneva in Switzerland[J]. Geobiology, 2008, 6(4):341-350.
[13]  Pacton M, Ariztegui D, Wacey D, et al. Going nano:a new step toward understanding the processes governing freshwater ooid formation[J]. Geology, 2012, 40(6):547-550.
[14]  Summons R E, Bird L R, Gillespie A L, et al. Lipid biomarkers in ooids from different locations and ages:evidence for a common bacterial flora[J]. Geobiology, 2013, 11(5):420-436.
[15]  梅冥相. 鲕粒成因研究的新进展[J]. 沉积学报, 2012, 30(1):20-32. [Mei Mingxiang. Brief introduction on new advances on the origin of ooids[J]. Acta Sedimentologica Sinica, 2012, 30(1):20-32.]
[16]  Eardley A J. Sediments of Great Salt Lake, Utah[J]. AAPG Bulletin, 1938, 22(10):1305-1411.
[17]  Carozzi A V. Cerebroid oolites[J]. Transactions of the Illinois State Academy of Science, 1962, 55(3/4):238-249.
[18]  Shearman D J, Twyman J, Zand Karimi M. The genesis and diagenesis of oolites[J]. Proceedings of the Geologists' Association, 1970, 81(3):561-575.
[19]  Kahle C F. Ooids from Great Salt Lake, Utah, as an analogue for the genesis and diagenesis of ooids in marine limestones[J]. Journal of Sedimentary Research, 1974, 44(1):30-39.
[20]  Sandberg P A. New interpretations of Great Salt Lake ooids and of ancient non-skeletal carbonate mineralogy[J]. Sedimentology, 1975, 22(4):497-537.
[21]  Simone L. Ooids:a review[J]. Earth-Science Reviews, 1980, 16:319-355.
[22]  Marshall J F, Davies P J. High-magnesium calcite ooids from the Great Barrier Reef[J]. Journal of Sedimentary Petrology, 1975, 45(1):285-291.
[23]  Milliman J D, Barretto H T. Relict magnesian calcite oolite and subsidence of the Amazon shelf[J]. Sedimentology, 1975, 22(1):137-145.
[24]  Davies P J, Martin K. Radial aragonite ooids, Lizard Island, Great Barrier Reef, Queensland, Australia[J]. Geology, 1976, 4(2):120-122.
[25]  Halley R B. Ooid fabric and fracture in the Great Salt Lake and the geologic record[J]. Journal of Sedimentary Research, 1977, 47(3):1099-1120.
[26]  Medwedeff D A, Wilkinson B H. Cortical Fabrics in Calcite and Aragonite Ooids[M]//Peryt T M. Coated Grains.Berlin Heidelberg:Springer, 1983:109-115.
[27]  Heller P L, Komar P D, Pevear D R. Transport processes in ooid genesis[J]. Journal of Sedimentary Research, 1980, 50(3):943-951.
[28]  Wilkinson B H, Landing E. "Eggshell diagenesis" and primary radial fabric in calcite ooids[J]. Journal of Sedimentary Research, 1978, 48(4):1129-1138.
[29]  Deelman J C. Experimental ooids and grapestones:carbonate aggregates and their origin[J]. Journal of Sedimentary Research, 1978, 48(2):503-512.
[30]  Chow N, James N P. Facies-specific, calcitic and bimineralic ooids from Middle and Upper Cambrian platform carbonates, western Newfoundland, Canada[J]. Journal of Sedimentary Research, 1987, 57(5):907-921.
[31]  Friedman G M, Amiel A J, Braun M, et al. Generation of carbonate particles and laminites in algal mats:example from sea-marginal hypersaline pool, Gulf of Aqaba, Red Sea[J]. AAPG Bulletin, 1973, 57(3):541-557.
[32]  Strasser A. Ooids in Purbeck limestones (lowermost Cretaceous) of the Swiss and French Jura[J]. Sedimentology, 1986, 33(5):711-727.
[33]  Berner R A. The role of magnesium in the crystal growth of calcite and aragonite from sea water[J]. Geochimica Et Cosmochimica Acta, 1975, 39(4):489-494, IN3, 495-504.
[34]  Sandberg P A. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy[J]. Nature, 1983, 305(5929):19-22.
[35]  Hardie L A. Secular variation in seawater chemistry:an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m. y.[J]. Geology, 1996, 24(3):279-283.
[36]  Lowenstein T K, Hardie L A, Timofeeff M N, et al. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines[J]. Geology, 2003, 31(10):857-860.
[37]  Berner R A, Kothavala Z. Geocarb III:A revised model of atmospheric CO2 over Phanerozoic time[J]. American Journal of Science, 2001, 301(2):182-204.
[38]  Bathurst R G C. Carbonate Sediments and Their Diagenesis[M]. Amsterdam:Elsevier Science, 1972:1-620.
[39]  Loreau J P, Purser B H. Distribution and Ultrastructure of Holocene Ooids in the Persian Gulf [M]//Purser B H. The Persian Gulf. New York:Springer-Verlag, 1973:279-328.
[40]  Scholle P A, Kinsman D J. Aragonitic and high-Mg calcite caliche from the Persian Gulf-a modern analog for the Permian of Texas and New Mexico[J]. Journal of Sedimentary Research, 1974, 44(3):904-916.
[41]  Lippmann F. Sedimentary Carbonate Minerals[M]. New York:Springer-Verlag, 1973:1-228.
[42]  Wilkinson B H, Owen R M, Carroll A R. Submarine hydrothermal weathering, global eustasy, and carbonate polymorphism in Phanerozoic marine oolites[J]. Journal of Sedimentary Research, 1985, 55(2):171-183.
[43]  Algeo T J, Watson B A. Calcite, aragonite, and bimineralic ooids in the Missourian (Upper Pennsylvanian) strata of Kansas:Stratigraphic and geographic patterns of variation[M]//Pausé P H, Candelaria M P. Carbonate Facies and Sequence Stratigraphy:Practical Applications of Carbonate Models. USA:PBGC-SEPM Publication, 1995:141-173.
[44]  Major R P, Halley R B, Lukas K J. Cathodoluminescent bimineralic ooids from the Pleistocene of the Florida continental shelf[J]. Sedimentology, 1988, 35(5):843-855.
[45]  Li F, Yan J X, Algeo T, et al. Paleoceanographic conditions following the end-Permian mass extinction recorded by giant ooids (Moyang, South China)[J]. Global and Planetary Change, 2013, 105:102-120.
[46]  Lehrmann D J, Minzoni M, Li X W, et al. Lower Triassic oolites of the Nanpanjiang Basin, south China:facies architecture, giant ooids, and diagenesis—implications for hydrocarbon reservoirs[J]. AAPG Bulletin, 2012, 96(8):1389-1414.
[47]  Land L S, Behrens E W, Frishman S A. The ooids of Baffin Bay, Texas[J]. Journal of Sedimentary Research, 1979, 49(4):1269-1277.
[48]  Popp B N, Wilkinson B H. Holocene lacustrine ooids from Pyramid Lake, Nevada[M]//Peryt T M. Coated Grains. Berlin, Heidelberg:Springer-Verlag, 1983:142-153.
[49]  Rankey E C, Reeder S L. Holocene ooids of Aitutaki Atoll, Cook Islands, South Pacific[J]. Geology, 2009, 37(11):971-974.
[50]  Assereto R, Folk R L. Brick-like texture and radial rays in Triassic pisolites of Lombardy, Italy:a clue to distinguish ancient aragonitic pisolites[J]. Sedimentary Geology, 1976, 16(3):205-222.
[51]  Tucker M E. Calcitic, aragonitic and mixed calcitic-aragonitic ooids from the mid-Proterozoic Belt Supergroup, Montana[J]. Sedimentology, 1984, 31(5):627-644.
[52]  Tucker M E. Calcitized aragonite ooids and cements from the Late Precambrian Biri Formation of southern Norway[J]. Sedimentary Geology, 1985, 43(1/2/3/4):67-84.
[53]  Tewari V C, Tucker M E. Ediacaran Krol carbonates of the lesser Himalaya, India:stromatolitic facies, depositional environment and diagenesis[M]//Tewari V, Seckbach J. STROMATOLITES:Interaction of Microbes with Sediments. Netherlands:Springer, 2011, 18:133-156.
[54]  Wilkinson B H, Buczynski C, Owen R M. Chemical control of carbonate phases; implications from Upper Pennsylvanian calcite-aragonite ooids of southeastern Kansas[J]. Journal of Sedimentary Research, 1984, 54(3):932-947.
[55]  Richter D K. Calcareous ooids:a synopsis[M]//Peryt T M. Coated Grains. Berlin, Heidelberg:Springer-Verlag, 1983:71-99.
[56]  Brand U, Veizer J. Origin of coated grains:trace element constraints[M]//Peryt T M. Coated Grains. Berlin, Heidelberg:Springer-Verlag, 1983:9-26.
[57]  Lohmann K C, Meyers W J. Microdolomite inclusions in cloudy prismatic calcites:a proposed criterion for former high-magnesium calcites[J]. Journal of Sedimentary Research, 1977, 47(3):1078-1088.
[58]  Richter K D, Füchtbauer H. Ferroan calcite replacement indicates former magnesian calcite skeletons[J]. Sedimentology, 1978, 25(6):843-860.
[59]  Swirydczuk K. Mineralogical control on porosity type in Upper Jurassic Smackover ooid grainstones, southern Arkansas and northern Louisiana[J]. Journal of Sedimentary Research, 1988, 58(2):339-347.
[60]  Kinsman D J J. Interpretation of Sr2+ concentrations in carbonate minerals and rocks[J]. Journal of Sedimentary Petrology, 1969, 39(2):486-508.
[61]  Heydari E, Snelling R D, Dawson W C, et al. Ooid Mineralogy and Diagenesis of the Pitkin Formation, North-Central Arkansas[M]//Keith B D, Zuppann C W. AAPG Studies in Geology. Mississippian oolites and modern analogs. American Association of Petroleum Geologists, 1993:175-184.
[62]  Kidder D L, Hall S. Petrology and diagenetic evolution of Neoproterozoic ooids (Libby Formation, western Montana, U. S. A.)[J]. Precambrian Research, 1993, 63(1/2):83-96.
[63]  Singh U. Ooids and cements from the Late Precambrian of the Flinders Ranges, South Australia[J]. Journal of Sedimentary Petrology, 1987, 57(1):117-127.
[64]  Oomori T, Kaneshima H, Maezato Y. Distribution coefficient of Mg2+ ions between calcite and solution at 10-50℃[J]. Marine Chemistry, 1987, 20(4):327-336.
[65]  Swett K, Knoll A H. Marine pisolites from Upper Proterozoic carbonates of East Greenland and Spitsbergen[J]. Sedimentology, 1989, 36(1):75-93.
[66]  Mackenzie F T, Pigott J D. Tectonic controls of Phanerozoic sedimentary rock cycling[J]. Journal of the Geological Society, 1981, 138(2):183-196.
[67]  Morse J W, Wang Q W, Tsio M Y. Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater[J]. Geology, 1997, 25(1):85-87.
[68]  Morse J W, Arvidson R S, Lüttge A. Calcium carbonate formation and dissolution[J]. Chemical Reviews, 2007, 107(2):342-381.
[69]  Stanley S M, Hardie L A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 144(1/2):3-19.
[70]  Ries J B. Review:geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification[J]. Biogeosciences, 2010, 7(9):2795-2849.
[71]  Stanley S M, Hardie L A. Hypercalcification:paleontology links plate tectonics and geochemistry to sedimentology[J]. GSA Today, 1999, 9(2):1-7.
[72]  Lowenstein T K, Timofeeff M N, Brennan S T, et al. Oscillations in Phanerozoic seawater chemistry:evidence from fluid inclusions[J]. Science, 2001, 294(5544):1086-1088.
[73]  Kiessling W, Aberhan M, Villier L. Phanerozoic trends in skeletal mineralogy driven by mass extinctions[J]. Nature Geoscience, 2008, 1(8):527-530.
[74]  Liu J B, Zhan R B, Dai X, et al. Demise of Early Ordovician oolites in South China:Evidence for paleoceanographic changes before the GOBE[M]//Gutiérrez-Marco J C, Rábano I, García-Bellido D. Ordovician of the World. Cuadernos del Museo Geominero, 2011:309-317.
[75]  Payne J L, Turchyn A V, Paytan A, et al. Calcium isotope constraints on the end-Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19):8543-8548.
[76]  H?nisch B, Ridgwell A, Schmidt D N, et al. The geological record of ocean acidification[J]. Science, 2012, 335(6072):1058-1063.
[77]  Li F, Yan J X, Chen Z Q, et al. Global oolite deposits across the Permian-Triassic boundary:A synthesis and implications for palaeoceanography immediately after the end-Permian biocrisis[J]. Earth-Science Reviews, 2015, doi:10.1016/j.earscirev.2014,12.006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133