全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
沉积学报  2015 

桂林洞穴滴水与现代碳酸钙δ18O记录的环境意义——以桂林七星岩NO.15支洞为例

DOI: 10.14027/j.cnki.cjxb.2015.04.008, PP. 697-705

Keywords: 大气降水,洞穴滴水,现代碳酸盐沉积,氧同位素,桂林七星岩15号支洞

Full-Text   Cite this paper   Add to My Lib

Abstract:

现代洞穴动态监测的一个先决条件就是为洞穴碳酸盐(CaCO3)沉积物—石笋的各种替代指标的解译提供可靠的依据,充分利用现代碳酸盐(CaCO3)沉积物的各种替代指标,并与现代器测气象资料进行相互对比、并用以校正,是精确或定量解释石笋气候替代指标的关键.经对桂林七星岩15号支洞的5个滴水点进行了长达四个水文年(2008~2011年)的大气降水、洞穴滴水、现代碳酸盐沉积物的动态监测和研究,并探讨了洞穴滴水和现代碳酸盐(CaCO3)的δ18O与降水δ18O的相关关系.研究表明,洞穴滴水和现代碳酸盐(CaCO3)的年平均δ18O值非常接近降水的δ18O平均值,并具有与地表降水δ18O相同的变化趋势,反映了洞穴滴水和现代碳酸盐(CaCO3)的δ18O主要来自大气降水的δ18O,即明显受控于降水的δ18O.在4个水文年中,现代洞穴次生化学碳酸盐(CaCO3)沉积物的δ18O值与滴水的δ18O值记录的年内(或年际)变化或多年的变化趋势基本相同,表现出明显的四高峰(δ18O低值区)四低谷(δ18O高值区)的波动变化特征,具有明显的年际、季节性变化规律,显示具有雨热同季的特点.研究结果表明洞穴滴水和洞穴现代碳酸盐(CaCO3)沉积物的δ18O可以记录当地或洞穴上方的气候变化信号,即现代碳酸盐(CaCO3)沉积物的δ18O主要作为夏季风强度或降雨量的替代指标.

References

[1]  McDermott F. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review[J]. Quaternary Science Reviews, 2004, 23(7/8): 901-918.
[2]  Fairchild I J, Smith C L, Baker A, et al. Modification and preservation of environmental signals in speleothems[J]. Earth-Science Reviews, 2006, 75(1/2/3/4): 105-153.
[3]  Lachniet M S. Climatic and environmental controls on speleothem oxygen-isotope values[J]. Quaternary Science Reviews, 2009, 28(5/6): 412-432.
[4]  Hendy C H. The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J]. Geochimica et cosmochimica Acta, 1971, 35(8): 801-824.
[5]  Neff U, Burns S J, Mangini A, et al. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago[J]. Nature, 2001, 411(6835): 290-293.
[6]  Bar-Matthews M, Ayalon A, Gilmour M, et al. Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals[J]. Geochimica et Cosmochimica Acta, 2003, 67(17): 3181-3199.
[7]  Baker A, Asrat A, Fairchild I J, et al. Analysis of the climate signal contained within δ18O and growth rate parameters in two Ethiopian stalagmites[J]. Geochimica et Cosmochimica Acta, 2007, 71(12): 2975-2988.
[8]  Cruz Jr F W, Karmann I, Viana Jr O, et al. Stable isotope study of cave percolation waters in subtropical Brazil: implications for paleoclimate inferences from speleothems[J]. Chemical Geology, 2005, 220(3/4): 245-262.
[9]  Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348.
[10]  Frappier A B, Sahagian D, Carpenter S J, et al. Stalagmite stable isotope record of recent tropical cyclone events[J]. Geology, 2007, 35(2): 111-114.
[11]  Bar-Matthews M, Ayalon A, Matthews A, et al. Carbon and oxygen isotope study of the active water-carbonate system in a karstic Mediterranean cave: Implications for paleoclimate research in semiarid regions[J]. Geochimica et Cosmochimica Acta, 1996, 60(2): 337-347.
[12]  Ayalon A, Bar-Matthews M, Sass E. Rainfall-recharge relationships within a karstic terrain in the Eastern Mediterranean semi-arid region, Israel: δ18O and δD characteristics[J]. Journal of Hydrology, 1998, 207(1/2): 18-31.
[13]  Yonge C J, Ford D C, Gray J, et al. Stable isotope studies of cave seepage water[J]. Chemical Geology: Isotope Geoscience Section, 1985, 58(1/2): 97-105.
[14]  Goede A, Green D C, Harmon R S. Isotopic composition of precipitation, cave drips and actively forming speleothems at three Tasmanian cave sites[J]. Helictite, 1982, (20): 17-29.
[15]  Williams P W, Fowler A. Relationship between oxygen isotopes in rainfall, cave percolation waters and speleothem calcite at Waitomo, New Zealand [J]. Journal of Hydrology, 2002, 41(1): 53-70.
[16]  Li Bin, Yuan Daoxian, Qin Jiaming, et al. Oxygen and carbon isotopic characteristics of rainwater, drip water and present speleothems in a cave in Guilin area, and their environmental meanings[J]. Science in China Series D: Earth Sciences, 2000, 43(3): 277-285.
[17]  van Beynen P, Febbroriello P. Seasonal isotopic variability of precipitation and cave drip water at Indian Oven Cave, New York[J]. Hydrological Processes, 2006, 20(8): 1793-1803.
[18]  Sp?tl C, Fairchild I J, Tooth A F. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves[J]. Geochimica et Cosmochimica Acta, 2005, 69(10): 2451-2468.
[19]  Mattey D, Lowry D, Duffet J, et al. A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: reconstructed drip water and relationship to local precipitation[J]. Earth and Planetary Science Letters, 2008, 269(1/2): 80-95.
[20]  罗维均,王世杰. 贵州凉风洞大气降水—土壤水—滴水的δ18O 信号传递及其意义[J]. 科学通报,2008,53(17):2071-2076. [Luo Weijun, Wang Shijie. Transmission of oxygen isotope signals of precipitation-soil water-drip water and its implications in Liangfeng Cave of Guizhou, China[J]. Chinese Science Bulletin, 2008, 53(17): 2071-2076.]
[21]  Pape J R, Banner J L, Mack L E, et al. Controls on oxygen isotope variability in precipitation and cave drip waters, central Texas, USA [J]. Journal of Hydrology, 2010, 385(1/2/3/4): 203-215.
[22]  谭明,南素兰. 中国季风区降水氧同位素年际变化的“环流效应”初探[J]. 第四纪研究,2010,30(3):620-622.[Tan Ming, Nan Sulan. Primary investigation on interannual changes in the circulation effect of precipitation oxygen isotopes in monsoon China[J]. Quaternary Sciences, 2010, 30(3): 620-622.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133