全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草地学报  2014 

达乌里胡枝子紫外吸收物质和渗透调节物质对干旱及增强UV-B辐射的动态响应

DOI: 10.11733/j.issn.1007-0435.2014.03.016, PP. 542-549

Keywords: 达乌里胡枝子,增强UV-B辐射,干旱胁迫,紫外吸收物质,渗透调节物质

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用盆栽试验研究达乌里胡枝子(Lespedezasdavurica)在不同水分梯度(适宜水分、轻度干旱胁迫、重度干旱胁迫),及不同水分梯度和增强UV-B辐射复合处理下其叶片中紫外吸收物质和渗透调节物质的动态响应。结果表明类黄酮含量在轻度和重度干旱胁迫下分别较适宜水分下升高39.2%和44.4%,总酚含量在重度胁迫下极显著升高(P<0.01),苯丙氨酸解氨酶(PAL)活性在轻度胁迫下先升高后降低。复合处理下类黄酮、总酚含量及PAL活性升高,各处理间差异显著。干旱胁迫下,游离脯氨酸含量在胁迫前期大量增加,可溶性蛋白含量在胁迫中期极显著升高,可溶性糖在重度干旱胁迫后期大量积累。UV-B辐射对不同水分梯度下三者含量影响不同游离脯氨酸含量在适宜水分和增强UV-B辐射复合处理下升高,在干旱和增强UV-B辐射复合处理下降低;可溶性蛋白合成在适宜水分和增强UV-B辐射复合处理初期受到一定的抑制,在干旱和增强UV-B辐射复合处理下被诱导;可溶性糖在复合处理下含量下降,但随着水分减少其下降幅度有所减弱。隶属函数综合分析表明,干旱胁迫下达乌里胡枝子抗氧化能力随着干旱胁迫强度增加而增加,增强UV-B辐射下轻度干旱胁迫使其抗氧化能力增强,而重度干旱胁迫使其抗氧化能力降低。

References

[1]  Shen X, Zhou Y, Duan L, Li Z, et al. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation [J]. Journal of plant physiology,2010,167(15):1248-1252
[2]  Bjrn L O. Effects of ozone depletion and increased UV-B on terrestrial ecosystems [J]. International Journal of Environmental Studies,1996,51(3):217-243
[3]  赵洁,杜润峰,王龙飞,等.达乌里胡枝子抗氧化防御系统对干旱及增强UV-B辐射的动态响应[J].草地学报,2013,21(2):308-315
[4]  Teramura A H, Sullivan J H, Lydon J. Effects of UV-B radiation on soybean yield and seed quality:A 6-year field study[J]. Physiologia Plantarum,1990,80(1):5-11
[5]  Alexieva V, Sergiev I, Mapelli S, et al. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat [J]. Plant, Cell and Environment,2001,24(12):1337-1344
[6]  王芳,姬茜茹,邱宗波,等.不同玉米品种对增强UV-B辐射与干旱复合胁迫的生理响应[J].农业环境科学学报,2009,28(3):438-442
[7]  吴征镒.中国植物志:41卷:2分册[M].北京:科学出版社,1999:41
[8]  Rai R, Meena R P, Smita S S, et al. UV-B and UV-C pre-treatments induce physiological changes and artemisinin biosynthesis in Artemisia annua L.-An antimalarial plant [J]. Journal of Photochemistry and Photobiology B: Biology,2011,105(3):216-225
[9]  Caldwell M M. Solar UV radiation and the growth and development of higher plants [J]. Photophysiology,1971,6(13):1-177
[10]  Lois R. Accumulation of UV-absorbing flavonoids induced by UV-B radiation in Ambidopsis thaliana L.[J]. Planta,1994,194(4):498-503
[11]  Meyers K J, Watkins C B, Pritts M P, et al. Antioxidant and antiproliferative activities of strawberries [J]. Journal of Agricultural and Food Chemistry,2003,51(23):6887-6892
[12]  高俊凤.植物生理学实验技术[M].西安:世界图书出版公司,2000:219-220
[13]  郝建军,康宗利,于洋.植物生理学实验技术[M].北京:化学工业出版社,2007:283-205
[14]  孙群,胡景江.植物生理学研究技术[M].杨陵:西北农林科技大学出版社,2006:152-154
[15]  Frohnmeyer H, Staiger D. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection[J]. Plant Physiology,2007,133(4):1420-1428
[16]  刘松.极端干旱环境下植物体内多酚类物质含量及其对逆境的响应研究[D].北京:北京林业大学,2007:46
[17]  董新纯. UV-B胁迫下苦荞类黄酮代谢及其防御机制研究[D].泰安:山东农业大学,2006:17
[18]  郝岗平,杜希华,史仁玖.干旱胁迫下外源一氧化氮促进银杏可溶性糖、脯氨酸和次生代谢产物合成[J].植物生理与分子生物学学报,2007,33(6):499-506
[19]  Campbell D, Eriksson M J, Oquist G, et al. The cyanobacterium synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins [J]. Proceedings of the National Academy of Sciences,1998,95(1):364-369
[20]  王毅,钟楚,陈宗瑜,等.UV-B辐射对烟草(Nicotiana tobacum)叶片总多酚含量和PPO活性的影响[J].中国烟草学报,2010,16(1):49-52
[21]  彭祺,周青.植物次生代谢响应 UV-B 辐射胁迫的生态学意义[J].中国生态农业学报,2009,17(3):610-615
[22]  Hofmann R, Campbell B, Bloor S, et al. Responses to UV-B radiation in Trifolium repens L.-Physiological links to plant productivity and water availability [J]. Plant, Cell and Environment,2003,26(4):603-612
[23]  Feng H, Li S, Xue L, et al. The interactive effects of enhanced UV-B radiation and soil drought on spring wheat [J]. South African Journal of Botany,2007,73(3):429-434
[24]  Sullivan J H, Teramura A H. Field study of the interaction between solar ultraviolet-B radiation and drought on photosynthesis and growth in soybean [J]. Plant Physiology,1990,92(1):141-146
[25]  Yang Y, Yao Y, Xu G, et al. Growth and physiological responses to drought and elevated ultraviolet-B in two contrasting populations of Hippophae rhamnoides [J]. Physiologia Plantarum,2005,124(4):431-440
[26]  王生耀,王堃,赵永来,等.干旱和UV-B对2种牧草生长和抗氧化系统的影响[J].草地学报,2008,16(4):392-395
[27]  冯虎元,安黎哲,陈书燕,等.增强UV-B辐射与干旱复合处理对小麦幼苗生理特性的影响[J].生态学报,2002,22(9):1564-1568
[28]  张娜,赵宝平,张艳丽,等.干旱胁迫下燕麦叶片抗氧化酶活性等生理特性变化及抗旱性比较[J].干旱地区农业研究,2013,31(1):166-171
[29]  刘爱荣,张远兵,谭志静,等.模拟干旱对佛甲草生长和渗透调节物质积累的影响[J].草业学报,2012,21(2):156-162
[30]  杜金友,陈晓阳,胡东南,等.干旱胁迫条件下几种胡枝子渗透物质变化的研究[J].华北农学报,2004,19(F12):40-44
[31]  史玉炜,王燕凌,李文兵,等.水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响[J].新疆农业大学学报,2007,30(2):5-8
[32]  Santos I, Fidalgo F, Almeida J M, et al. Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation [J]. Plant Science,2004,167(4):925-935
[33]  张红霞,吴能表,胡丽涛,等.不同强度UV-B辐射胁迫对蚕豆幼苗生长及叶绿素荧光特性的影响[J].西南师范大学学报:自然科学版,2010,35(1):105-110
[34]  林文雄.水稻对UV-B辐射增强的生理响应及其分子机制研究[J].中国生态农业学报,2013,21(1):119-126
[35]  Madronich S, McKenzie R L, Bjrn L O, et al. Changes in biologically active ultraviolet radiation reaching the Earth's surface [J]. Journal of Photochemistry and Photobiology B: Biology,1998,46(1):5-19
[36]  吴能表,洪鸿.细胞内 IP3-Ca2 途径对UV-B辐射下玉米幼苗光合特性的调控机制[J].作物学报,2013,39(2):373-379
[37]  曾建敏,林文雄,梁康迳,等.水稻对低剂量UV-B辐射胁迫的分子应答研究[J].应用生态学报,2003,14(6):941-944
[38]  王永志,姚银安,陈小荣,等.干旱和紫外线辐射对刺梨叶片光合生理的影响[J].贵州农业科学,2009,37(6):36-38

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133