全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草地学报  2014 

15N库稀释法和15N示踪法在草地生态系统氮转化过程研究中的应用——方法与进展

DOI: 10.11733/j.issn.1007-0435.2014.06.002, PP. 1153-1162

Keywords: 全球气候变化,草地,氮循环,氮沉降,15N库稀释法/示踪法,土壤微生物

Full-Text   Cite this paper   Add to My Lib

Abstract:

氮素(N)是陆地生态系统尤其是草地生态系统第一生产力的重要限制性养分之一.陆地生态系统N素的可利用性由土壤N素的转化速率决定,其中包括氨化和硝化2个重要过程.准确测定N素在各转化过程中的量,对于估算陆地生态系统N转化非常重要.稳定性同位素15N由于其安全、准确且不干扰自然生态系统等特点,近年来在生态系统N循环研究方面得到广泛应用,常用方法包括15N自然丰度法、15N还原法、15N库稀释法和15N示踪法.在查阅大量文献的基础上,搜集整理了15N库稀释法和15N示踪法的详细操作流程并综述了其在草地生态系统应用的最新进展,分别从不同草地管理方式(增施氮肥、放牧、火烧和刈割等)和全球气候变化(增温、增雨、大气氮沉降和CO2浓度升高等)对草地生态系统N转化过程的影响进行论述.同位素15N在草地生态系统应用的方法同样适用于森林、农田以及其他陆地生态系统.

References

[1]  LeBauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed [J]. Ecology,2008,89(2):371-379
[2]  Bond G. Some aspects of translocation in root nodule plants [J]. Journal of Experimental Botany,1956,7(3):387-394
[3]  Leaf G, Gardner I G, Bond G. Observations on the composition and metabolism of the nitrogen-fixing root nodules of Alnus [J]. Journal of Experimental Botany,1958,9(3):320-331
[4]  Adams M A, Grierson P F. Stable isotopes at natural abundance in terrestrial plant ecology and ecophysiology: An update [J]. Plant Biology,2001,3(4):299-310
[5]  Booth M S, Stark J M, Rastetter E. Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data [J]. Ecological Monographs,2005,75(2):139-157
[6]  Friedrich U, Falk K, Bahlmann E, et al. Fate of airborne nitrogen in heathland ecosystems: A 15N tracer study [J]. Global Change Biology,2011,17(4):1549-1559
[7]  Schroeder-Moreno M S, Greaver T L, Wang S X, et al. Mycorrhizal-mediated nitrogen acquisition in switchgrass under elevated temperatures and N enrichment [J]. Bioenergy,2012,4(3):266-276
[8]  Wu H H, Dannenmann M, Fanselow N, et al. Feedback of grazing on gross rates of N mineralization and inorganic N partitioning in steppe soils of Inner Mongolia[J]. Plant Soil,2011,340(1/2):127-139
[9]  苏波,韩兴国,黄建辉. 15N自然丰度法在生态系统氮素循环研究中的应用[J]. 生态学报,1999,19(3):408-416
[10]  姚凡云,朱彪,杜恩在. 15N自然丰度法在陆地生态系统氮循环研究中的应用[J]. 植物生态学报,2012,36(4):346-352
[11]  Harrison K A, Bol R, Bardgett R D. Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? [J]. Soil Biology & Biochemistry,2008,40(1):228-237
[12]  Harrison K A, Bol B, Bardgett R D. Preferences for different nitrogen forms by coexisting plant species and soil microbes [J]. Ecology,2007,88(4):989-999
[13]  Xu Y Q, He J C, Cheng W X, et al. Natural 15N abundance in soils and plants in relation to N cycling in a rangeland in Inner Mongolia [J]. Journal of Plant Ecology,2010,3(3):201-207
[14]  Rütting T, Clough T J, Müller C, et al. Ten years of elevated atmospheric carbon dioxide alters soil nitrogen transformations in a sheep-grazed pasture [J]. Global Change Biology,2010,16(9):2530-2542
[15]  Müller C, Laughlin R J, Christie P, et al. Effects of repeated fertilizer and cattle slurry applications over 38 years on N dynamics in a temperate grassland soil [J]. Soil Biology & Biochemistry,2011,43(6):1362-1371
[16]  Barker C C, Hughes I W, Young G T. Amino-acids and peptides. Part V, determination of L-glutamic acid by the isotope dilution method [J]. Journal of the Chemical Society,1951:3047-3051
[17]  Higginson W C E, Sutton D. The oxidation of hydrazine in aqueous solution. Part Ⅱ, the use of 15N as a tracer in the oxidation of hydrazine [J]. Journal of the Chemical Society,1953:1402-1406
[18]  Kirkham D, Bartholomew W V. Equations for following nutrient transformations in soil, utilizing tracer data [J]. Soil Science Society of America Journal,1954,18(1):33-34
[19]  Robson T M, Baptist F, Clément J C, et al. Land use in subalpine grasslands affects nitrogen cycling via changes in plant community and soil microbial uptake dynamics [J]. Journal of Ecology,2010,98(1):62-73
[20]  Holst J, Liu C Y, Brüggemann N, et al. Microbial N turnover and N-oxide (N2O/NO/NO2) fluxes in semi-arid grassland of Inner Mongolia [J]. Ecosystems,2007,10(4):623-634
[21]  Müller C, Rütting T, Kattge J, et al. Estimation of parameters in complex 15N tracing models by Monte Carlo sampling [J]. Soil Biology & Biochemistry,2007,39(3):715-726
[22]  Hu S, Chapin III F S, Firestone M K, et al. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2 [J]. Nature,2001,409(6817):188-191
[23]  Song M H, Xu X L, Hu Q W, et al. Interactions of plants species mediated plant competition for inorganic nitrogen with soil microorganisms in an alpine meadow [J]. Plant Soil,2007,297(1/2):127-137
[24]  Wu H, Dannenmann M, Wolf B, et al. Seasonality of soil microbial nitrogen turnover in continental steppe soils of Inner Mongolia [J]. Ecosphere,2012,3(4):34
[25]  Wang S P, Li Y H. The influence of different stocking rates and grazing periods on the chemical components in feces of grazing sheep and relationship among the fecal components [J]. Acta Zoonvtrimenta Sinica,1997,9(2):49-56
[26]  Templer P H, Arthur M A, Lovett G M, et al. Plant and soil natural abundance δ15N: Indicators of relative rates of nitrogen cycling in temperate forest ecosystems [J]. Oecologia,2007,153(2):399-406
[27]  Bai E, Houlton B Z. Coupled isotopic and process-based modeling of gaseous nitrogen losses from tropical rain forests [J]. Global Biogeochemical Cycles,2009,23(2):GB2011
[28]  Coetsee C, Stock W D, Craine J. Do grazers alter nitrogen dynamics on grazing lawns in a South African savannah [J]. African Journal of Ecology,2010,49(1):62-69
[29]  吴田乡,黄建辉. 放牧对内蒙古典型草原生态系统植物及土壤δ15N的影响[J]. 植物生态学报,2010,34(2):160-169
[30]  Frank D A, Evans R D. Effects of native grazers on grassland N cycling in Yellowstone National Park [J]. Ecology,1997,78(7): 2238-2248
[31]  Cheng W X, Chen Q S, Xu Y Q, et al. Climate and ecosystem 15N natural abundance along a transect of Inner Mongolian grasslands: Contrasting regional patterns and global patterns [J]. Global Biogeochemical Cycles,2009,23(2):GB2005
[32]  Craine J M, Ballantyne F, Peel M, et al. Grazing and landscape controls on nitrogen availability across 330 South African savanna sites [J]. Austral Ecology,2009,34(7):731-740
[33]  Hobbie E A, Jumpponen A, Trappe J. Foliar and fungal 15N:14N ratio reflect development of mycorrhizae and nitrogen supply during primary succession:Esting analytical models [J]. Oecologia,2005,146(2):258-268
[34]  Pardo L H, Templer P H, Goodale C L, et al. Regional assessment of N saturation using foliar and root delta 15N [J]. Biogeochemistry,2006,80(2):143-171
[35]  Taghizadeh-Toosi A, Clough T J, Condron L M, et al. Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches [J]. Journal of Environmental Quality,2011,40(2):468-476
[36]  Zhang J B, Zhu T B, Cai Z C, et al. Effects of long-term repeated mineral and organic fertilizer applications on soil nitrogen transformations [J]. European Journal of Soil Science,2012,63(1):75-85
[37]  Zogg D G, Zak D R, Pregitzer K S, et al. Microbial immobilization and retention of anthropogenic nitrate in a northern hardwood forest [J]. Ecology,2000,81(7):1858-1866
[38]  Hodge A, Stewart J, Robinson D, et al. Spatial and physical heterogeneity of N supply from soil does not influence N capture by two grass species [J]. Functional Ecology,2000,14(5):645-653
[39]  Providoli I, Bugmann H, Siegwolf R, et al. Pathways and dynamics of 15NO3- and 15NH4+ applied in a mountain Picea abies forest and in a nearby meadow in central Switzerland [J]. Soil Biology & Biochemistry,2006,38(7):1645-1657
[40]  Friedrich U, Oheimb G V, Kriebitzsch W U, et al. Nitrogen deposition increases susceptibility to drought-experimental evidence with the perennial grass Molinia caerulea L. Moench [J]. Plant Soil,2012,353(1/2):59-71
[41]  Skinner R A, Ineson P, Jones H, et al. Heathland vegetation as a bio-monitor for nitrogen deposition and source attribution using δ15N values [J]. Atmospheric Environmental,2006,40(3):498-507
[42]  Dijkstra F A, Pendall E, Mosier A R, et al. Long-term enhancement of N availability and plant growth under elevated CO2 in a semi-arid grassland [J]. Functional Ecology,2008,22(6):975-982
[43]  Dijkstra F A, Blumenthal D, Morgan J A, et al. Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland [J]. New Phytologist,2010,187(2):426-437
[44]  Müller C, Rütting T, Abbasi M K, et al. Effect of elevated CO2 on soil N dynamics in a temperate grassland soil [J]. Soil Biology & Biochemistry,2009,41(9):1996-2001
[45]  Mathieu O, Hénault C, Lévêque J, et al. Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using 15N tracers [J]. Environmental Pollution,2006,144(3):933-940
[46]  Raciti S M, Groffman P M, Fahey T J. Nitrogen retention in urban lawns and forests [J]. Ecological Applications,2008,18(7): 1615-1626
[47]  Johnson B G, Johnson D W, Chambers J C, et al. Fire effects on the mobilization and uptake of nitrogen by cheatgrass (Bromus tectorum L.) [J]. Plant Soil,2011,341(1/2):437-445
[48]  Certini G. Effects of fire on properties of forest soils: A review [J]. Oecologia,2005,143(1):1-10
[49]  Dannenmann M, Willibald G, Sippel S, et al. Nitrogen dynamics at undisturbed and burned Mediterranean shrublands of Salento Peninsula, Southern Italy [J]. Plant Soil,2011,343(1/2):5-15
[50]  Couto-Vázquez A, González-Prieto S J. Short- and medium-term effects of three fire fighting chemicals on the properties of a burnt soil [J]. Science of the Total Environment,2006,371(1):353-361
[51]  González-Prieto S J, Villar M C, Carballas T. Availability of 15N from pioneer herbaceous plants to pine seedlings in reclaimed burnt soils [J]. Rapid Communications in Mass Spectrometry,2008,22(18):2799-2802
[52]  Cech P G, Edwards P J, Venterink H O. Why is abundance of herbaceous legumes low in African Savanna? A test with two model species [J]. Biotropica,2010,42(5):580-589
[53]  Ayres E, Mromph K M, Cook R, et al. The influence of below-ground herbivory and defoliation of a legume on nitrogen transfer to neighbouring plants [J]. Functional Ecology,2007,21(2):256-263
[54]  Rasmussen J, Eriksen J, Jensen E S, et al. In situ carbon and nitrogen dynamics in ryegrass-clover mixtures: Transfers, deposition and leaching [J]. Soil Biology & Biochemistry,2007,39(3):804-815
[55]  Wang C H, Butterbach-Bahl K, Han Y, et al. The effects of biomass removal and N addition on microbial N transformation and biomass at different vegetation types in an old-field ecosystem in northern China [J]. Plant Soil,2011,340(1/2):397-411
[56]  Arneth A, Harrison S P, Zaehle S, et al. Terrestrial biogeochemical feedbacks in the climate system [J]. Nature Geoscience,2010,3(8):525-532
[57]  Mannel T T, Auerswald K, Schnyder H. Altitudinal gradients of grassland carbon and nitrogen isotope composition are recorded in the hair of grazer [J]. Global Ecology and Biogeography,2007,16(5):583-592
[58]  Bijoor N S, Czimczik C I, Pataki D E, et al. Effects of temperature and fertilization on nitrogen cycling and community composition of an urban lawn [J]. Global Change Biology,2008,14(9):2119-2131
[59]  Murphy B P, Bowman D M. The carbon and nitrogen isotope composition of Australian grasses in relation to climate [J]. Functional Ecology,2009,23(6):1040-1049
[60]  McKinley D C, Romero J C, Hungate B A, et al. Does deep soil N availability sustain long-term ecosystem responses to elevated CO2? [J]. Global Change Biology,2009,15(8):2035-2048

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133