全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于NMR和X-CT的煤的孔裂隙精细定量表征

, PP. 1598-1607

Keywords: 煤层气,孔隙,裂隙,核磁共振(NMR),计算机层析扫描(X-CT)

Full-Text   Cite this paper   Add to My Lib

Abstract:

?从实现精细化、无损化和定量化表征角度,报道了应用低场核磁共振技术和微焦点CT扫描技术等对煤的孔裂隙类型、有效孔隙度、孔径结构分布和孔裂隙的空间配置等进行精细定量表征的新方法.研究发现:(1)煤的核磁共振横向驰豫时间(T2)为0.5~2.5,20~50和>100ms时所对应的3个谱峰分别代表了微小孔、中大孔和裂隙,谱峰越大则该峰所代表的孔裂隙越发育;(2)煤的三元组构中,矿物、有机组分和孔裂隙分别具有不同的CT数分布区间,通常孔裂隙的CT数都小于600HU,因此可通过CT数来重构孔裂隙的分布;(3)根据煤样核磁共振实验的T2截止值计算了煤的有效孔隙度,它是煤岩渗透率主要决定因素;(4)基于核磁实验和离心实验提出的“T2C法”有效地实现了对煤的孔径结构分布的重构;(5)采用高精度的微焦点CT扫描,实现了煤的孔裂隙的三维建模,完成了对孔裂隙的尺度及空间发育展布特征的精细描述.

References

[1]  1 姚艳斌, 刘大锰, 汤达祯, 等.华北地区煤层气储集性能与产出性能研究.石油勘探与开发, 2007, 34: 664—668
[2]  2 Sing K S W. Characterization of porous materials: Past, present and future. Colloid Surf A, 2004, 241: 3—7
[3]  3 姚艳斌, 刘大锰, 汤达祯, 等. 两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究.煤炭学报, 2006, 31: 163—168
[4]  4 Yao Y B, Liu D M, Tang D Z, et al. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals. Int J Coal Geol, 2008, 73: 27—42
[5]  5 Yao Y B, Liu D M, Tang D Z, et al. Fractal characterization of seepage-pores of coals from China: An investigation on permeability of coals. Comput Geosci, 2009, 35: 1159—1166
[6]  6 Suuberg E M, Deevi S C, Yun Y. Elastic behaviour of coals studied by mercury porosimetry. Fuel, 1995, 74: 1522—1530
[7]  7 Gane P A C, Ridgway C J, Lehtinen E, et al. Comparison of NMR cryoporometry, mercury intrusion porosimetry, and DSC thermoporosimetry in characterizing pore size distributions of compressed finely ground calcium carbonate structures. Ind Eng Chem Res, 2004, 43: 7920—7927
[8]  8 Yao Y B, Liu D M, Che Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR). Fuel, 2009, 89: 1371—1380
[9]  9 Yao Y B, Liu D M, Che Y, et al. Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography. Int J Coal Geol, 2009, 80: 113—123
[10]  10 Coates G R, Xiao L Z, Prammer M G. NMR Logging Principles and Applications. Houston (Texas): Gulf Publishing Company, 1999. 1—76
[11]  11 Kevin M, Douglas M, Smith A. NMR technique for the analysis of pore structure: Numerical inversion of relaxation measurements. J Colloid Interface Sci, 1987, 19: 117—126
[12]  12 Hodgkins M A, Howard J J. Application of NMR logging to reservoir characterization of low-resistivity sands in the gulf of Mexico. AAPG Bull, 1999, 83: 114—127
[13]  13 王为民, 孙佃庆, 苗盛, 等. 核磁共振测井基础实验研究. 测井技术, 1997, 21: 385—392
[14]  14 王筱文, 肖立志, 谢然红, 等. 中国陆相地层核磁共振孔隙度研究. 中国科学G辑: 物理学 力学 天文学, 2006, 36: 366—374
[15]  15 Kenyon W E. Nuclear magnetic resonance as a petrophysical measurement. Nucl Geophys, 1992, 6: 153—171
[16]  16 Karacan C ?, Okandan E. Fracture/cleat analysis of coals from Zonguldak Basin (northwestern Turkey) relative to the potential of coalbed methane production. Int J Coal Geol, 2000, 44: 109—125
[17]  17 Van Geet M, Swennen R. Quantitative 3D-fracture analysis by means of microfocus X-ray computer tomography (μCT): An example from coal. Geophys Res Lett, 2001, 28: 3333—3336
[18]  18 Mazumder S, Wol K H A A, Elewaut K, et al. Application of X-ray computed tomography for analyzing cleat spacing and cleat aperture in coal samples. Int J Coal Geol, 2006, 68: 205—222
[19]  19 Yakov V. A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data. Petrophysics, 2001, 42: 334—343
[20]  20 刘堂晏, 肖立志, 傅容珊, 等. 球管孔隙模型的核磁共振(NMR)弛豫特征及应用. 地球物理学进展, 2004, 47: 663—671

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133