56 Annen C, Blundy J D, Sparks R S J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol, 2006, 47: 505—539
[2]
57 Martin H. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 1999, 46: 411—429
[3]
58 Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 1993, 362: 144—146
[4]
59 Rudnick R L, Gao S. Composition of the continental crust. In: Rudnick R L, ed. Treatise on Geochemistry. Amsterdam: Elsevier, 2003. 1—64
[5]
60 Yang J H, Chung S L, Zhai M G, et al. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: Evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 2004, 73: 145—160
[6]
61 Collins W J. Upper- and middle-crustal response to delamination: An example from the Lachlan fold belt, eastern Australia. Geology, 1994, 22: 143—146
[7]
62 Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chem Geol, 2002, 187: 143—173
[8]
63 Wang Q, Wyman D A, Xu J F, et al. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta, 2007, 71: 2609—2636
[9]
64 Boztug D, Arehart G B. Oxygen and sulfur isotope geochemistry revealing a significant crustal signature in the genesis of the post-collisional granitoids in central Anatolia, Turkey. J Asian Earth Sci, 2007, 30: 403—416
[10]
65 Hawkesworth C S, Turner K, Gallagher A, et al. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. J Geophys Res, 1995, 100: 10271—10286
[11]
66 Hooper P R, Bailey D G, Holder G A M. Tertiary calc-alkaline magmatism associated with lithospheric extension in the Pacific Northwest. J Geophys Res, 1995, 100: 10303—10319
[12]
67 Lopez R, Cameron K L. High Mg andesites from the Gila Bend Mountains, southwestern Arizona: Evidence for hydrous melting of lithosphere during Miocene extension. Geol Soc Am Bull, 1997, 109: 900—914
[13]
1 Mattauer M, Malavieille J, Calassou S, et al. The Songpan-Garze Triassic belt of West Sichuan and Eastern Tibet: A decollement fold belt on passive margin (in French). C R Acad Sci Paris, 1992, 314: 619—626
[14]
2 许志琴, 侯立炜, 王宗秀. 中国松潘带的造山过程. 北京: 地质出版社, 1992. 190
[15]
3 Seng?r A M C, Natalin B A. Paleotectonics of Asia: Fragment of a synthesis. In: Yin A, Harrison T M, eds. The Tectonics of Asia. New York: Cambridge University Press, 1996. 486—640
[16]
4 Bruguier O, Lancelot J R, Malavieille J. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China): Provenance and tectonic correlations. Earth Planet Sci Lett, 1997, 152: 217—231
6 Enkin R J, Zhenyu Y, Yan C, et al. Paleomagnetic constraints on the geodynamic history of the major blocks of China from the Permian to the present. J Geophys Res, 1992, 97: 13953—13989
[19]
7 Roger F, Malavieille J, Leloup P H, et al. Timing of granite emplacement and cooling in the Songpan-Garze Fold Belt (eastern Tibetan Plateau) with tectonic implications. J Asian Earth Sci, 2004, 22: 465—481
[20]
8 Harrowfield M J, Wilson C J L. Indosinian deformation of the Songpan Garze Fold Belt, northeast Tibetan Plateau. J Struct Geol, 2005, 27: 101—117
[21]
9 Reid A J, Wilson C J L, Liu S. Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc, eastern Tibetan Plateau. J Struct Geol, 2005, 27: 119—137
11 Zhang H F, Zhang L, Harris N, et al. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garzê Fold Belt, eastern Tibet Plateau: Constraints on petrogenesis, nature of basement and tectonic evolution. Contrib Mineral Petrol, 2006, 152: 75—88
[24]
12 Xiao L, Zhang H F, Clemens J D, et al. Late Triassic granitoids of the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution. Lithos, 2007, 96: 436—452
[25]
13 Zhang H F, Parrish R, Zhang L, et al. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination. Lithos, 2007, 97: 323—335
[26]
14 Zhou M F, Yan D P, Vasconcelos P M, et al. Structural and geochronological constraints on the tectono-thermal evolution of the Danba domal terrane, eastern margin of the Tibetan Plateau. J Asian Earth Sci, 2008, 33: 414—427
17 Kay R W, Mahlburg Kay S. Delamination and delamination magmatism. Tectonophysics, 1993, 219: 177—189
[30]
18 Jung S, Mezger K, Hoernes S. Petrology and geochemistry of syn- to post-collisional metaluminous A-type granites—A major and trace element and Nd-Sr-Pb-O-isotope study from the Proterozoic Damara Belt, Namibia. Lithos, 1998, 45: 147—175
[31]
19 Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 2002, 30: 1111—1114
[32]
20 Chung S L, Chu M F, Zhang Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Sci Rev, 2005, 68: 173—196
[33]
21 Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 2005, 233: 103—119
[34]
22 Wu F Y, Yang J H, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem Geol, 2005, 221: 127—156
[35]
23 Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 2003, 31: 1021—1024
[36]
24 Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton. Nature, 2004, 432: 892—897
[37]
25 Ilbeyli N, Pearce J A, Thirlwall M F, et al. Petrogenesis of collision-related plutonics in Central Anatolia, Turkey. Lithos, 2004, 72: 163—182
[38]
26 Deng J F, Su S G, Niu Y L, et al. A possible model for the lithospheric thinning of North China Craton: Evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonism. Lithos, 2007, 96: 22—35
[39]
27 Calassou S. Tectonic study of a decollement belt A-Triassic and Tertiary tectonic in Songpan Garze Belt (Eastern Tibet). B- Geometry and Kinematics of deformation in Thrust wedges: Insights from analogue modeling (in French). Dissertation for the Doctoral Degree. Montpellier: University Montpellier-2, 1994. 400
[40]
28 Roger F, U-Pb geochronology on zircon and isotope geochemistry (Pb, Sr and Nd) of the basement in the Songpan-Garze fold belt (China) (in French).. C R Acad Sci Paris, 1997, 324: 819—826
[41]
29 Huang M, Maas R, Buick I S, et al. Crustal response to continental collisions between the Tibet, Indian, South China and North China blocks: Geochronological constraints from the Songpan-Garze orogenic belt, western China. J Metamorph Geol, 2003, 21: 223—240
32 Yuan H L, Shan G, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostand Geoanal Res, 2004, 28: 353—370
[45]
33 Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem Geol, 2002, 192: 59—79
[46]
34 Ludwig K R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronlogical Center Special Publication No.4, 2003. 25—32
[47]
35 Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol, 2006, 234: 105—126
[48]
36 DeBievre P, Taylor P D P. Table of the isotopic composition of the elements. Int J Mass Spectrom, 1993, 123: 149—166
[49]
37 Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 2006, 34: 745—748
[50]
38 Scherer E, Muenker K C, Mezger K. Calibration of the lutetium-hafnium clock. Science, 2001, 293: 683—687
[51]
39 Blichert-Toft J, Albarde F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett, 1997, 148: 243—258
[52]
40 Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta, 1999, 63: 533—556
[53]
41 Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 2002, 61: 237—269
[54]
42 Weislogel A L, Graham S A, Chang E Z, et al. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks. Geology, 2006, 34: 97—100
[55]
43 Qiu Y M, Gao S, McNaughton N J, et al. First evidence of >3.2 Ga continental crust in the Yangtze Craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 2000, 28: 11—14
[56]
44 Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and process. In: Sunders A D, Norry M J, eds. Magmatism in the Ocean Basin. London: Geological Society Special Publication, 1989. 313—345
[57]
45 Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. London: Blackwell Oxford, 1985
[58]
46 Kinny P D, Maas R. Lu-Hf and Sm-Nd isotope systems in zircon. Rev Mineral Geochem, 2003, 53: 327—341
[59]
47 Cai H M, Zhang H F, Xu W C. U-Pb zircon ages, geochemical and Sr-Nd-Hf isotopic compositions of granitoids in western Songpan-Garze fold belt: Petrogenesis and implication for tectonic evolution. J Earth Sci, 2009, 20: 681—698
[60]
48 Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petrol, 1982, 80: 189—200
[61]
49 Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol, 1987, 95: 407—419
[62]
50 Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 1992, 20: 641—644
[63]
51 Whalen J B, Jenner G A, Longstaffe F J, et al. Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians. J Petrol, 1996, 37: 1463—1489
[64]
52 Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 1999, 46: 605—626
[65]
53 Mashima H. The basalt-high magnesium andesite association formed by multi-stage partial melting of a heterogeneous source mantle: Evidence from Hirado-Seto, Northwest Kyushu, Southwest Japan. Lithos, 2009, 112: 351—366
[66]
54 Jolly W T, Schellekens J H, Dickin A P. High-Mg andesites and related lavas from southwest Puerto Rico (Greater Antilles Island Arc): Petrogenetic links with emplacement of the Late Cretaceous Caribbean mantle plume. Lithos, 2007, 98: 1—26
[67]
55 Tatsumi Y, Takahashi T, Hirahara Y, et al. New insights into andesite genesis: The role of mantle-derived calc-alkalic and crust-derived tholeiitic melts in magma differentiation beneath ZaoVolcano, NE Japan. J Petrol, 2008, 49: 1971—2008