全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

松潘带印支期岩石圈拆沉作用新证据:来自火山岩岩石成因的研究

, PP. 1518-1532

Keywords: 火山岩,U-Pb定年,地球化学,岩石成因,岩石圈拆沉作用,松潘带

Full-Text   Cite this paper   Add to My Lib

Abstract:

?先前根据松潘带广泛分布的花岗岩类研究,已提出了松潘带印支期岩石圈拆沉作用模型,但这一模型的建立尚缺少该区火山岩类研究的支持,在松潘带印支期岩石圈拆沉作用过程中是否存在岩石圈地幔物质的部分熔融值得关注.对产于松潘带中部的阿坝和洼赛火山岩进行了LA-ICP-MS锆石U-Pb定年、地球化学和Sr-Nd-Hf同位素组成研究.结果表明,阿坝和洼赛火山岩属于钙碱性安山岩类,它们的岩浆结晶年龄分别为(210±3)和(205±1)Ma,与松潘带印支晚期花岗岩类的形成时代相一致,形成于松潘带碰撞后构造背景.阿坝和洼赛火山岩显示有明显差异的地球化学特征,前者高Al2O3,K2O和Rb,低Na2O,Ba和Sr,表明它们不存在统一的岩浆演化.在全岩Sr和Nd同位素组成上,阿坝火山岩ISr=0.7070~0.7076,εNd(t)=?5.3~-3.9;洼赛火山岩ISr=0.7075~0.7077,εNd(t)=?3.9~-3.6.锆石Lu-Hf同位素组成指示,阿坝火山岩εHf(t)=-3.7~0.3,洼赛火山岩εHf(t)=-2.7~5.5.分析表明,阿坝火山岩和洼赛火山岩化学组成代表了它们原始熔体的组成,在岩浆演化过程中地壳物质的同化混染作用不明显.阿坝火山岩的岩浆源以壳源物质为主,含有少量幔源物质,其岩浆源区可能位于壳幔边界,而洼赛火山岩的岩浆起源于岩石圈地幔的部分熔融,岩石圈地幔可能受到含角闪石流体的交代作用.阿坝和洼赛火山岩的岩石成因为松潘带印支期岩石圈发生拆沉作用提供了又一新的证据,表明松潘带印支期岩石圈拆沉作用导致残留岩石圈地幔部分的熔融作用.

References

[1]  56 Annen C, Blundy J D, Sparks R S J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol, 2006, 47: 505—539
[2]  57 Martin H. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 1999, 46: 411—429
[3]  58 Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 1993, 362: 144—146
[4]  59 Rudnick R L, Gao S. Composition of the continental crust. In: Rudnick R L, ed. Treatise on Geochemistry. Amsterdam: Elsevier, 2003. 1—64
[5]  60 Yang J H, Chung S L, Zhai M G, et al. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: Evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 2004, 73: 145—160
[6]  61 Collins W J. Upper- and middle-crustal response to delamination: An example from the Lachlan fold belt, eastern Australia. Geology, 1994, 22: 143—146
[7]  62 Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chem Geol, 2002, 187: 143—173
[8]  63 Wang Q, Wyman D A, Xu J F, et al. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta, 2007, 71: 2609—2636
[9]  64 Boztug D, Arehart G B. Oxygen and sulfur isotope geochemistry revealing a significant crustal signature in the genesis of the post-collisional granitoids in central Anatolia, Turkey. J Asian Earth Sci, 2007, 30: 403—416
[10]  65 Hawkesworth C S, Turner K, Gallagher A, et al. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. J Geophys Res, 1995, 100: 10271—10286
[11]  66 Hooper P R, Bailey D G, Holder G A M. Tertiary calc-alkaline magmatism associated with lithospheric extension in the Pacific Northwest. J Geophys Res, 1995, 100: 10303—10319
[12]  67 Lopez R, Cameron K L. High Mg andesites from the Gila Bend Mountains, southwestern Arizona: Evidence for hydrous melting of lithosphere during Miocene extension. Geol Soc Am Bull, 1997, 109: 900—914
[13]  1 Mattauer M, Malavieille J, Calassou S, et al. The Songpan-Garze Triassic belt of West Sichuan and Eastern Tibet: A decollement fold belt on passive margin (in French). C R Acad Sci Paris, 1992, 314: 619—626
[14]  2 许志琴, 侯立炜, 王宗秀. 中国松潘带的造山过程. 北京: 地质出版社, 1992. 190
[15]  3 Seng?r A M C, Natalin B A. Paleotectonics of Asia: Fragment of a synthesis. In: Yin A, Harrison T M, eds. The Tectonics of Asia. New York: Cambridge University Press, 1996. 486—640
[16]  4 Bruguier O, Lancelot J R, Malavieille J. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China): Provenance and tectonic correlations. Earth Planet Sci Lett, 1997, 152: 217—231
[17]  5 张国伟, 郭安林, 姚安平. 中国大陆构造中的西秦岭-松潘大陆构造结. 地学前缘, 2004, 11: 23—32
[18]  6 Enkin R J, Zhenyu Y, Yan C, et al. Paleomagnetic constraints on the geodynamic history of the major blocks of China from the Permian to the present. J Geophys Res, 1992, 97: 13953—13989
[19]  7 Roger F, Malavieille J, Leloup P H, et al. Timing of granite emplacement and cooling in the Songpan-Garze Fold Belt (eastern Tibetan Plateau) with tectonic implications. J Asian Earth Sci, 2004, 22: 465—481
[20]  8 Harrowfield M J, Wilson C J L. Indosinian deformation of the Songpan Garze Fold Belt, northeast Tibetan Plateau. J Struct Geol, 2005, 27: 101—117
[21]  9 Reid A J, Wilson C J L, Liu S. Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc, eastern Tibetan Plateau. J Struct Geol, 2005, 27: 119—137
[22]  10 胡健民, 孟庆任, 石玉若, 等. 松潘-甘孜地体内花岗岩锆石SHRIMP定年及其构造意义. 岩石学报, 2005, 21: 867—880
[23]  11 Zhang H F, Zhang L, Harris N, et al. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garzê Fold Belt, eastern Tibet Plateau: Constraints on petrogenesis, nature of basement and tectonic evolution. Contrib Mineral Petrol, 2006, 152: 75—88
[24]  12 Xiao L, Zhang H F, Clemens J D, et al. Late Triassic granitoids of the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution. Lithos, 2007, 96: 436—452
[25]  13 Zhang H F, Parrish R, Zhang L, et al. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination. Lithos, 2007, 97: 323—335
[26]  14 Zhou M F, Yan D P, Vasconcelos P M, et al. Structural and geochronological constraints on the tectono-thermal evolution of the Danba domal terrane, eastern margin of the Tibetan Plateau. J Asian Earth Sci, 2008, 33: 414—427
[27]  15 赵永久, 袁超, 周美夫, 等. 川西老君沟和孟通沟花岗岩的地球化学特征、成因机制及对松潘-甘孜地体基底性质的制约. 岩石学报, 2007, 23: 995—1006
[28]  16 时章亮, 张宏飞, 蔡宏明. 松潘造山带马尔康强过铝质花岗岩的成因及其构造意义. 地球科学, 2009, 34: 569—584
[29]  17 Kay R W, Mahlburg Kay S. Delamination and delamination magmatism. Tectonophysics, 1993, 219: 177—189
[30]  18 Jung S, Mezger K, Hoernes S. Petrology and geochemistry of syn- to post-collisional metaluminous A-type granites—A major and trace element and Nd-Sr-Pb-O-isotope study from the Proterozoic Damara Belt, Namibia. Lithos, 1998, 45: 147—175
[31]  19 Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 2002, 30: 1111—1114
[32]  20 Chung S L, Chu M F, Zhang Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Sci Rev, 2005, 68: 173—196
[33]  21 Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 2005, 233: 103—119
[34]  22 Wu F Y, Yang J H, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem Geol, 2005, 221: 127—156
[35]  23 Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 2003, 31: 1021—1024
[36]  24 Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton. Nature, 2004, 432: 892—897
[37]  25 Ilbeyli N, Pearce J A, Thirlwall M F, et al. Petrogenesis of collision-related plutonics in Central Anatolia, Turkey. Lithos, 2004, 72: 163—182
[38]  26 Deng J F, Su S G, Niu Y L, et al. A possible model for the lithospheric thinning of North China Craton: Evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonism. Lithos, 2007, 96: 22—35
[39]  27 Calassou S. Tectonic study of a decollement belt A-Triassic and Tertiary tectonic in Songpan Garze Belt (Eastern Tibet). B- Geometry and Kinematics of deformation in Thrust wedges: Insights from analogue modeling (in French). Dissertation for the Doctoral Degree. Montpellier: University Montpellier-2, 1994. 400
[40]  28 Roger F, U-Pb geochronology on zircon and isotope geochemistry (Pb, Sr and Nd) of the basement in the Songpan-Garze fold belt (China) (in French).. C R Acad Sci Paris, 1997, 324: 819—826
[41]  29 Huang M, Maas R, Buick I S, et al. Crustal response to continental collisions between the Tibet, Indian, South China and North China blocks: Geochronological constraints from the Songpan-Garze orogenic belt, western China. J Metamorph Geol, 2003, 21: 223—240
[42]  30 赵永久. 松潘-甘孜东部中生代中酸性侵入体的地球化学特征、岩石成因及构造意义. 博士学位论文. 广州: 中国科学院广州地球化学研究所, 2007. 75—76
[43]  31 青海省地质矿产局. 青海省区域地质志. 北京: 地质出版社, 1991
[44]  32 Yuan H L, Shan G, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostand Geoanal Res, 2004, 28: 353—370
[45]  33 Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem Geol, 2002, 192: 59—79
[46]  34 Ludwig K R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronlogical Center Special Publication No.4, 2003. 25—32
[47]  35 Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol, 2006, 234: 105—126
[48]  36 DeBievre P, Taylor P D P. Table of the isotopic composition of the elements. Int J Mass Spectrom, 1993, 123: 149—166
[49]  37 Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 2006, 34: 745—748
[50]  38 Scherer E, Muenker K C, Mezger K. Calibration of the lutetium-hafnium clock. Science, 2001, 293: 683—687
[51]  39 Blichert-Toft J, Albarde F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett, 1997, 148: 243—258
[52]  40 Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta, 1999, 63: 533—556
[53]  41 Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 2002, 61: 237—269
[54]  42 Weislogel A L, Graham S A, Chang E Z, et al. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks. Geology, 2006, 34: 97—100
[55]  43 Qiu Y M, Gao S, McNaughton N J, et al. First evidence of >3.2 Ga continental crust in the Yangtze Craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 2000, 28: 11—14
[56]  44 Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and process. In: Sunders A D, Norry M J, eds. Magmatism in the Ocean Basin. London: Geological Society Special Publication, 1989. 313—345
[57]  45 Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. London: Blackwell Oxford, 1985
[58]  46 Kinny P D, Maas R. Lu-Hf and Sm-Nd isotope systems in zircon. Rev Mineral Geochem, 2003, 53: 327—341
[59]  47 Cai H M, Zhang H F, Xu W C. U-Pb zircon ages, geochemical and Sr-Nd-Hf isotopic compositions of granitoids in western Songpan-Garze fold belt: Petrogenesis and implication for tectonic evolution. J Earth Sci, 2009, 20: 681—698
[60]  48 Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petrol, 1982, 80: 189—200
[61]  49 Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol, 1987, 95: 407—419
[62]  50 Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 1992, 20: 641—644
[63]  51 Whalen J B, Jenner G A, Longstaffe F J, et al. Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians. J Petrol, 1996, 37: 1463—1489
[64]  52 Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 1999, 46: 605—626
[65]  53 Mashima H. The basalt-high magnesium andesite association formed by multi-stage partial melting of a heterogeneous source mantle: Evidence from Hirado-Seto, Northwest Kyushu, Southwest Japan. Lithos, 2009, 112: 351—366
[66]  54 Jolly W T, Schellekens J H, Dickin A P. High-Mg andesites and related lavas from southwest Puerto Rico (Greater Antilles Island Arc): Petrogenetic links with emplacement of the Late Cretaceous Caribbean mantle plume. Lithos, 2007, 98: 1—26
[67]  55 Tatsumi Y, Takahashi T, Hirahara Y, et al. New insights into andesite genesis: The role of mantle-derived calc-alkalic and crust-derived tholeiitic melts in magma differentiation beneath ZaoVolcano, NE Japan. J Petrol, 2008, 49: 1971—2008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133