全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

华南地区下石炭亚系碳同位素记录及对晚古生代冰期的响应

, PP. 1533-1542

Keywords: 石炭纪,冰期,碳同位素,华南,广西

Full-Text   Cite this paper   Add to My Lib

Abstract:

?广西隆安剖面和巴平剖面下石炭亚系碳酸盐岩稳定碳同位素的研究表明,早石炭亚纪孤立台地相和深水斜坡相碳酸盐岩碳同位素受早期淡水及后期埋藏成岩作用影响较小,基本上保存了正常海水碳同位素演化特征.华南地区早石炭亚纪的δ13C值表现出3个明显的正向偏移.经牙形石生物地层对比,第1次明显的δ13C正向偏移发生在杜内阶Siphonodellaisosticha-UpperSiphonodellacrenulata带中部,偏移量为4.19‰;第2次明显的正向偏移发生在杜内阶/维宪阶之交,偏移量为4.65‰;第3次明显的δ13C正向偏移发生在谢尔普霍夫阶Gnathodusbollandensis带底部,偏移量可达2.23‰.这3个明显的碳同位素正向偏移在全球范围内均可以得到很好的对比,与华南地区及全球海平面下降一致,反映了早石炭亚纪有机质大量埋藏、大气CO2分压的下降以及晚古生代的冰川作用.

References

[1]  1 Berner R A. Atmospheric carbon dioxide levels over Phanerozoic time. Science, 1990, 249: 1382—1386
[2]  2 Crowell J C. The ending of the late Paleozoic ice age during the Permian Period. In: Scholle P A, Peryt T M, Ulmer-Scholle D S, eds. The Permian of Northern Pangea. Berlin: Springer-Verlag, 1995. 62—74
[3]  3 Tait J, Schatz M, Bachtadse V, et al. Palaeomagnetism and Palaeozoic palaeogeography of Gondwana and European terranes. Geol Soc Spec Publ, 2000, 179: 21—34
[4]  4 Saltzman M R. Late Paleozoic ice age: Oceanic gateway or PCO2? Geology, 2003, 31: 151—154
[5]  5 Buggisch W, Joachimski M M, Sevastopulo G, et al. Mississippian δ13Ccarb and conodont apatite δ18O records—Their relation to the Late Palaeozoic Glaciation. Palaeogeogr Palaeoclimatol Palaeoecol, 2008, 268: 273—292
[6]  6 Caputo M V. Late Devonian glaciation in South America. Palaeogeogr Palaeoclimatol Palaeoecol, 1985, 51: 291—317
[7]  7 Garzanti E, Sciunnach D. Early Carboniferous onset of Gondwanian glaciation and Neo-tethyan rifting in South Tibet. Earth Planet Sci Lett, 1997, 148: 359—365
[8]  8 Limarino C, Gutiérrez P. Diamictites in the Agua Colorada Formation (northwestern Argentina): New evidence of Carboniferous glaciation in South America. J South Am Earth Sci, 1990, 3: 9—20
[9]  9 González-Bonorino G. Carboniferous glaciation in Gondwana. Evidence for grounded marine ice and continental glaciation in southwestern Argentina. Palaeogeogr Palaeoclimatol Palaeoecol, 1992, 91: 363—375
[10]  10 Veevers J J. Pangea: Evolution of a supercontinent and its consequences for Earth’s paleoclimate and sedimentary environments. In: Klein G D, ed. Pangea: Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith, and Breakup of A Supercontinent. Geol Soc Am Spec Pap, 1994, 288: 13—23
[11]  11 Smith L B, Read J F. Rapid onset of late Paleozoic glaciation on Gondwana: Evidence from Upper Mississippian strata of the Midcontinent, United States. Geology, 2000, 28: 279—282
[12]  12 Mii H S, Grossman E L, Yancey T E. Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation. Geol Soc Am Bull, 1999, 111: 960—973
[13]  13 Saltzman M R, González L A, Lohmann K C. Earliest Carboniferous cooling step triggered by the Antler orogeny? Geology, 2000, 28: 347—350
[14]  14 Mii H S, Grossman E L, Yancey T E, et al. Isotopic records of brachiopod shells from the Russian Platform-Evidence for the onset of mid-Carboniferous glaciation. Chem Geol, 2001, 175: 133—147
[15]  15 Grossman E L, Yancey T E, Jones T E, et al. Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. Palaeogeogr Palaeoclimatol Palaeoecol, 2008, 268: 222—233
[16]  16 Saltzman M R. Carbon and oxygen isotope stratigraphy of the Lower Mississippian (Kinderhookian-lower Osagean), western United States: Implications for seawater chemistry and glaciation. Geol Soc Am Bull, 2002, 114: 96—108
[17]  17 Frakes L A, Francis J E, Syktus J I. Climate Modes of the Phanerozoic. London: Cambridge University Press, 1992
[18]  18 Isbell J L, Miller M F, Wolfe K L, et al. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclothems? Geol Soc Am Spec Pap, 2003, 370: 5—24
[19]  19 Saltzman M R, Young S A. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-Stratigraphic evidence from western Laurentia. Geology, 2005, 33: 109—112
[20]  20 Marshall J D, Brenchley P J, Mason P, et al. Global carbon isotopic events associated with mass extinction and glaciation in the late Ordovician. Palaeogeogr Palaeoclimatol Palaeoecol, 1997, 132: 195—210
[21]  21 Zachos J C, Kump L R. Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene. Glob Planet Change, 2005, 47: 51—66
[22]  22 刘本培, 李儒峰, 尤德宏. 黔南独山石炭系层序地层及麦粒(竹蜓)带冰川型全球海平面变化. 地球科学, 1994, 19: 553—563
[23]  23 李儒峰, 刘本培, 赵澄林, 等. 扬子板块石炭纪沉积层序及其全球性对比研究. 沉积学报, 1997, 5: 23—28
[24]  24 李儒峰, 刘本培. 黔南Triticites带旋回层序碳同位素特征及冰川型海平面变化. 地质学报, 1996, 70: 342—350
[25]  25 林春明, 凌洪飞, 王淑君, 等. 苏皖地区石炭纪海相碳酸盐岩碳和氧同位素演化规律. 地球化学, 2002, 31: 415—423
[26]  26 冯增昭, 杨玉卿, 鲍志东, 等. 中国南方石炭纪岩相古地理. 北京: 地质出版社, 1998
[27]  27 邝国敦, 李家骥, 钟铿, 等. 广西的石炭系. 武汉: 中国地质大学出版社, 1999
[28]  28 郄文昆, 张雄华, 蔡雄飞, 等. 华南地区石炭纪-早二叠世早期成冰期的地球生物学过程与烃源岩的形成. 地球科学—中国地质大学学报, 2007, 32: 803—810
[29]  29 左景勋, 童金南, 邱海鸥, 等. 下扬子地区早三叠世碳酸盐岩碳同位素组成的演化特征. 中国科学D辑: 地球科学, 2006, 36: 109—122
[30]  30 田树刚, Coen M. 华南石炭纪杜内-维宪界线期牙形石演化和层型标志. 中国科学D辑: 地球科学, 2005, 35: 1028—1036
[31]  31 Wynn T C, Read J F. Carbon-oxygen isotope signal of Mississippian slope carbonates, Appalachians, USA: A complex response to climate-driven fourth-order glacio-eustasy. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 256: 254—272
[32]  32 Popp B. The record of carbon, oxygen, sulfur, and strontium isotopes and trace elements in Late Paleozoic brachiopods. Doctoral Dissertation. Urbana: University of Illinois, 1986
[33]  33 Algeo T J, Wilkinson B H, Lohmann K C. Meteoric-burial diagenesis of Middle Pennsylvanian limestones in the Orogrande Basin, New Mexico: Water/rock interactions and basin geothermics. J Sediment Petrol, 1992, 62: 652—670
[34]  34 Meyers W J, Lohmann K C. Isotope geochemistry of regionally extensive calcite cement zones and marine components in Mississippian limestones, New Mexico. Soc Paleontol Econ Mineral Spec Publ, 1985, 36: 223—239
[35]  35 Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Res, 1995, 73: 27—49
[36]  36 Xiao S H, Knoll A H, Kaufman A J, et al. Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform. Precambrian Res, 1997, 84: 197—220
[37]  37 Hudson J D. Carbon isotopes and limestone cement. Geology, 1975, 3: 19—22
[38]  38 Kennedy M J, Runnegar B, Prave A R, et al. Two or four Neoproterozoic glaciations? Geology, 1998, 26: 1059—1063
[39]  39 Marshall J D. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Mag, 1992, 129: 143—160
[40]  1541
[41]  40 Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol, 1999, 161: 59—88
[42]  41 Saltzman M R. Carbon isotope (δ13C) stratigraphy across the Silurian-Devonian transition in North America: Evidence for a perturbation of the global carbon cycle. Palaeogeogr Palaeoclimatol Palaeoecol, 2002, 187: 83—100
[43]  42 Peters-Kottig W, Strauss H, Kerp H. The land plant δ13C record and plant evolution in the Late Palaeozoic. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 240: 237—252
[44]  43 Gradstein F M, Ogg J G, Smith A, et al. A Geologic Time Scale 2004. London: Cambridge University Press, 2004
[45]  44 Hance L, Muchez P, Hou H F, et al. Biostratigraphy, sedimentology and sequence stratigraphy of the Tournaisian-Visean transitional strata in South China (Guangxi). Geol J, 1997, 32: 337—357
[46]  45 Lees A, Hallet V, Hibo D. Facies variation in Waulsortian buildups, Part 1. A model from Belgium. Geol J, 1985, 20: 133—158
[47]  46 Bishop J W, Montanez I P, Gulbranson E L, et al. The onset of mid-Carboniferous glacio-eustasy: Sedimentologic and diagenetic constraints, Arrow Canyon, Nevada. Palaeogeogr Palaeoclimatol Palaeoecol, 2009, 276: 217—243

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133