全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

东亚地区气溶胶光学厚度时空分布模拟与分析

, PP. 1446-1458

Keywords: CMAQ,黑碳气溶胶,硫酸盐,AERONET,AOD

Full-Text   Cite this paper   Add to My Lib

Abstract:

?于多尺度空气质量模式系统(RAMS-CMAQ)模拟的2005年东亚地区主要气溶胶(如硫酸盐、硝酸盐、铵盐、有机碳、黑碳、土壤尘和海盐)质量浓度,并利用质量-消光重建法(reconstructionmass-extinction)计算了气溶胶光学厚度(AOD),以分析该地区AOD的空间分布与季节变化特征.为了检验模拟结果的合理性,将AOD的模拟值与相应的AERONET和CSHNET观测值进行了比较.比较结果显示,总体上(尤其在自然生态环境下)AOD的模拟值与观测值相符,模式能够较为合理地反映观测AOD的时空变化特性,而在人为活动较多的城市或城乡地区,模拟结果存在一定程度上的低估.模拟结果分析表明,AOD分布具有较强的时空变化:总体上AOD值夏季小,冬季大;如果不考虑沙尘气溶胶的影响,其最大值区(超过0.8)出现在中国四川盆地、华南和华中的部分地区,并可维持数月;而在东亚北部地区、西部区域及南部海域,AOD值则相对较低,一般在0.2以下.另外,通过分析主要气溶胶物种对AOD的贡献发现,硫酸盐、硝酸盐和铵盐是东亚地区AOD的主要贡献者,在AOD高值区其贡献大都超过了80%,而黑碳气溶胶在中国北部人为活动密集区对AOD贡献较大,在冬季尤为明显.

References

[1]  26 张美根. 多尺度空气质量模式系统及其验证 I. 模式系统介绍与气象要素模拟. 大气科学, 2005, 29: 805—813
[2]  27 Stockwell W R, Middleton P, Chang J S, et al. The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J Geophys Res, 1990, 95: 16343—16367
[3]  28 Binkowski F S, Shankar U. The regional particulate matter model: 1. Model description and preliminary results. J Geophys Res, 1995, 100: 26191—26209
[4]  29 Zhang M G, Uno I, Carmichael G R, et al. Large-scale structure of trace gas and aerosol distributions over the western Pacific Ocean during TRACE-P. J Geophys Res, 2003, 108: 8820, doi: 10.1029/2002JD002946
[5]  30 Zhang M G, Uno I, Yoshida Y, et al. Transport and Transformation of Sulfur compounds over East Asia during the TRACE-P and ACE-Asia Campaigns. Atmos Environ, 2004, 38: 6947—6959
[6]  1 王明星, 张仁健. 大气气溶胶研究的前沿问题. 气候与环境研究, 2001, 6: 119—124
[7]  2 Ghan S J, Schwartz S E. Aerosol properties and processes: A path from field and laboratory measurements to global climate models. Bull Amer Meteorol Soc, 2007, 88: 1059—1083
[8]  3 Intergovernmental Panel on Climate Change (IPCC). The Physical Science Basis of Climate Change: Changes in Atmospheric Constituents and in Radiative Forcing. New York: Cambridge University Press, 2007. 26—27
[9]  4 Deepak A, Gali G. The International Global Aerosol Program (IGAP) Plan. Virginia: Deepak Publishing, 1991
[10]  5 Xin J Y, Wang Y S, Li Z Q, et al. AOD and Angstrom exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005. J Geophys Res, 2007, 112: D05203, doi: 10.1029/2006JD007075
[11]  6 Francis P N, Hignett P, Taylor J P. Aircraft observations and modeling of sky radiance distributions from aerosol during TARFOX. J Geophys Res, 1999, 104: 2309—2319
[12]  7 Bergstrom R W, Russell P B. Estimation of aerosol direct radiative effects over the midlatitude North Atlantic from satellite and in situ measurements. Geophys Res Lett, 1999, 26: 173l—1734
[13]  8 Ghan S, Laulainen N, Easter R, et al. Evaluation of aerosol direct radiative forcing in MIRAGE. J Geophys Res, 2001, 106: 5295—5316
[14]  9 Malleta M, Ponta V, Lioussea C, et al. Simulation of aerosol radiative properties with the ORISAM-RAD model during a pollution event (ESCOMPTE 2001). Atmos Environ, 2006, 40: 7696—7705
[15]  10 Toon O B, Pollack J B. A global average model of atmospheric aerosols for radiative transfer calculations. J Appl Meteorol, 1976, 15: 225—246
[16]  11 Tegen I, Koch D, Lacis A A, et al. Trends in tropospheric aerosol loads and corresponding impact on direct radiative forcing between 1950 and 1990: A model study. J Geophys Res, 2000, 105: 26971—26989
[17]  12 Jacobson M Z. Global direct radiative forcing of multicomponent anthropogenic and natural aerosol. J Geophys Res, 2001, 106: 1551—1568
[18]  13 Takemura T, Nakajima T, Dubovik O, et al. Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J Clim, 2002, 15: 333—352
[19]  14 Hatzianastassiou N, Katsoulis B, Vardavas I. Global distribution of aerosol direct radiative forcing in the ultraviolet and visible arising under clear skies. Tellus, 2004, 56: 51—71
[20]  15 Koch D, Bond T C, Streets D, et al. Linking future aerosol radiative forcing to shifts in source activities. Geophys Res Lett, 2007, 34: L05821, doi: 10.1029/2006GL028360
[21]  16 Xu J, Bergin M H, Yu X, et al. Measurement of aerosol chemical, physical and radiative properties in the Yangtze delta region of China. Atmos Environ, 2002, 36: 161—173
[22]  17 Xu J, Bergin M, Greenwald H R, et al. Direct aerosol radiative forcing in the Yangtze delta region of China: Observation and model estimation. J Geophys Res, 2003, 108: 4060, doi: 10.1029/2002JD002550
[23]  18 Marmer E, Langmann B, Hungershofer K, et al. Aerosol modeling over Europe: 2. Interannual variability of aerosol shortwave direct radiative forcing. J Geophys Res, 2007, 112: D23S16, doi: 10.1029/2006JD008040
[24]  19 Roy B, Mathur R, Gilliland A B, et al. A comparison of CMAQ-based aerosol properties with IMPROVE, MODIS, and AERONET data. J Geophys Res, 2007, 112: D14301, doi: 10.1029/2006JD008085
[25]  20 Galindo N, Nicolas J F, Yubero E, et al. Factors affecting levels of aerosol sulfate and nitrate on the Western Mediterranean coast. Atmos Res, 2007, 88: 305—313
[26]  21 Li X, Zhou X, Li W, et al. The cooling of Sichuan province in recent 40 years and its probable mechanisms. Acta Met Sin, 1995, 9: 57—68
[27]  22 王喜红, 石广玉. 东亚地区人为硫酸盐的直接辐射强迫. 高原气象, 2001, 20: 258—267
[28]  23 王喜红, 石广玉. 东亚地区云和地表反照率对硫酸盐直接辐射强迫的影响. 气象学报, 2002, 60: 754—765
[29]  24 吴涧, 符淙斌, 蒋维楣, 等. 东亚地区矿物尘气溶胶直接辐射强迫的初步模拟研究. 地球物理学报, 2005, 48: 1250—1260
[30]  25 高丽洁, 王体健, 徐永富, 等. 中国硫酸盐气溶胶及其辐射强迫的模拟. 高原气象, 2004, 23: 612—619
[31]  31 Zhang M G. Modeling of organic carbon aerosol distributions over East Asia in the springtime. China Part, 2004, 2: 192—195
[32]  32 Carmichael G R, Sakurai T, Streets D, et al. MICS-Asia II: The model intercomparison study for Asia Phase II methodology and overview of findings. Atmos Environ, 2008, 42: 3468—3490
[33]  33 Woo J H, Streets D G, Carmichael G R, et al. Contribution of biomass and biofuel emissions to trace gas distributions in Asia during the TRACE-P experiment. J Geophys Res, 2003, 108: 8812, doi: 10.1029/2002JD003200
[34]  34 Olivier J G J, Bouwman A F, C van der Maas W M, et al. Emission database for global atmospheric research. Environ Monit Assess, 1994, 31: 93—106
[35]  35 Benkovitz C M, Schultz M T, Pacyna J, et al. Global gridded inventories of anthropogenic emissions of sulfur and nitrogen. J Geophys Res, 1996, 101: 239—253
[36]  36 Malm W C, Sisler J F, Huffman D, et al. Spatial and seasonal trends in particle concentration and optical extinction in the United States. J Geophys Res, 1994, 99: 1347—1370
[37]  37 Han Z W, Zhang R J, Wang Q G, et al. Regional modeling of organic aerosols over China in summertime. J Geophys Res, 2008, 113: D11202, doi: 10.1029/2007JD009436
[38]  38 He K B, Yang F M, Ma Y L, et al. The characteristics of PM2.5 in Beijing, China. Atmos Environ, 2001, 35: 4959—4970
[39]  39 Ye B M, Ji X L, Yang H Z, et al. Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period. Atmos Environ, 2003, 37: 499—510

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133