全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

华南东段前泥盆纪构造演化:来自碎屑锆石的证据

, PP. 1377-1388

Keywords: 碎屑锆石,U-Pb定年,构造演化,前泥盆纪,华南

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用LA-ICP-MS分析技术,对华南东段赣南地区泥盆纪和奥陶纪粗碎屑岩中的5件样品进行了碎屑锆石的U-Pb年代学研究,获得该区前泥盆纪地壳演化的丰富信息.312组谐和年龄数据主要集中在2600~2300Ma(峰值2470Ma)、1100~900Ma(峰值980Ma)、900~700Ma(峰值800Ma)、650~520Ma(峰值580Ma)和450~400Ma(峰值440Ma)这五个时间段.在一颗继承锆石的核部发现3.5Ga的年龄值.分析认为,1100~900Ma为全球Rodinia大陆聚合、Grenville造山带形成的特征年龄值,出露在华夏南东缘的972Ma流纹岩层以及同期基性变质岩可与该年龄值匹配,可能揭示华夏陆块曾是Rodinia大陆的一部分;900~700Ma对应着Rodinia大陆的裂解过程,这期事件的地质标志如花岗岩、基性岩墙、裂谷型沉积作用等,在研究区多处出现;650~520Ma对应泛非事件,目前地表尚无相应的岩浆岩石和构造形迹的记录;450~400Ma是全球早古生代晚期造山作用的特征年龄,研究区大量分布的志留纪-早泥盆世S型花岗岩体以及对应的岩浆锆石测年值,是华夏陆块在早古生代晚期发生强烈造山作用的物质与年龄证据.本文还对2470Ma峰值年龄和华夏陆块来源及其连接进行了探讨.

References

[1]  13 Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Res, 2003, 122: 85—109
[2]  14 Li W X, Li X H, Li Z X. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrain Res, 2005, 136: 51—66
[3]  15 Zhang S H, Jiang G Q, Zhang J M, et al. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on Late Neoproterozoic glaciations. Geology, 2005, 33: 473—476
[4]  16 袁宗信, 吴良士, 张宗清, 等. 闽北麻源群Sm-Nd、Rb-Sr同位素年龄研. 岩石矿物学杂志, 1991, 2: 127—132
[5]  17 邓平, 舒良树, 肖旦红. 中国东南部晚中生代火成岩的基底探讨. 高校地质学报, 2002, 8: 169—179
[6]  18 舒良树. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带. 高校地质学报, 2006, 12: 418—431
[7]  19 舒良树, 于津海, 贾东, 等. 华南东段早古生代造山带研究. 地质通报, 2008, 27: 1581—1593
[8]  20 任纪舜, 陈廷愚, 牛宝贵, 等. 中国东部及邻区大陆岩石圈的构造演化与成矿. 北京: 科学出版社, 1990. 1—205
[9]  21 李继亮. 东南大陆岩石圈结构与地质演化. 北京: 冶金工业出版社, 1993. 1—264
[10]  22 殷鸿福, 吴顺宝, 杜远生, 等. 华南是特提斯多岛洋体系的一部分. 地球科学, 1999, 24: 1—12
[11]  23 Zhou J C, Wang X L, Qiu J S. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: Coeval arc magmatism and sedimentation. Precambrian Res, 2009, 170: 27—42
[12]  24 徐夕生, 邓平, O’Reilly S Y, 等. 华南贵东杂岩体单颗粒锆石激光探针ICPMS U-Pb定年及其成岩意义. 科学通报, 2003, 48: 1328——1334
[13]  25 于津海, 周新民, O’Reilly Y S, 等. 南岭东段基底麻粒岩相变质岩的形成时代和原岩性质: 锆石的U-Pb-Hf同位素研究. 科学通报, 2005, 50: 1758—1767
[14]  26 于津海, O’Reilly S Y, 王丽娟, 等. 华夏地块古老物质的发现和前寒武纪地壳的形成. 科学通报, 2007, 52: 11—18
[15]  31 郭令智. 华南板块构造. 北京: 地质出版社, 2001. 1—264
[16]  32 Shu L S, Charvet J. Kinematic and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone (Jiangnan region, South China). Tectonophysics, 1996, 267: 291—302
[17]  33 Charvet J, Shu L S, Shi Y S, et al. The building of South China: Collision of Yangzi and Cathaysia Block, problems and tentative answers. J Southeast Asian Earth Sci, 1996, 13: 223—235
[18]  34 Zheng Y F, Wu R X, Wu Y B. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan orogen, South China. Precambrian Res, 2008, 163: 351—383
[19]  35 Li W X, Li X H, Li Z X. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrain Res, 2005, 136: 51—66
[20]  47 陆松年. 初论“泛华夏造山作用”与加里东和泛非造山作用的对比. 地质通报, 2004, 23: 952—958
[21]  54 于津海, 王丽娟, O’Reilly S Y, 等. 赣南存在古元古代基底: 来自上犹陡水煌斑岩中捕虏锆石的U-Pb-Hf同位素证据. 科学通报, 2009, 54: 898—905
[22]  55 于津海, 王丽娟, 周新民, 等. 粤东北基底变质岩的组成和形成时代. 地球科学, 2006, 31: 38—48
[23]  56 张芳容, 舒良树, 王德滋, 等. 华南东段加里东期花岗岩类形成构造背景探讨. 地学前沿, 2009, 16: 248—260
[24]  65 Li Z X, Wartho J, Occhipinti S, et al. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia: New mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints. Precambrian Res, 2007, 159: 79—94
[25]  66 Yang Z Y, Sun Z M, Yang T, et al. A long connection (750—380 Ma) between South China and Australia: Paleomagnetic constraints. Earth Planet Sci Lett, 2004, 220: 423—434
[26]  67 Yu J H, O’Reillyb, Wang L J, et al. Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Res, 2008, 164: 1—15
[27]  68 Harley S L, Black L P. A revised Archaean chronology for the Napier Complex, Enderby Land from SHRIMP ion-microprobe studies. Antar Sci, 1997, 9: 74—91
[28]  83 Rino S, Komiya T, Windley B F, et al. Majore pisodic increases of continental crustal growth determined fromzircon ages of river sands: Implications for mantle overturns in the Early Precambrian. Phys Earth Planet Int, 2004, 146: 369—394
[29]  1 徐克勤, 刘英俊, 俞受均, 等. 江西南部加里东期花岗岩的发现. 地质论评, 1960, 20: 112—114
[30]  2 郭令智, 俞剑华, 施央申. 华南加里东地槽褶皱区大地构造发展的基本特征. 见: 陈国达, 著. 中国大地构造问题. 北京: 科学出版社, 1965. 165—183
[31]  3 Guo L Z, Shi Y S, Ma R S. Geotectonic framework and crust evolution of the South China. Scientific Papers on Geology for International Exchange (I). Beijing: Geological Publishing House, 1980. 109—116
[32]  4 郭令智. 华南板块构造. 北京: 地质出版社, 2001. 1—264
[33]  5 周洪瑞. 赣东北皖南晚元古代地层与构造古地理. 见: 王鸿祯, 主编. 华南地区古大陆边缘构造史. 武汉: 武汉地质学院出版社, 1986. 173—182
[34]  6 周新民, 朱云鹤. 江绍断裂带的岩浆混合作用及其两侧的前寒武纪地质. 中国科学B辑, 1992, 22: 296—303
[35]  7 Li X H. Timing of the Cathaysia block formation: Constraints from SHRIMP U-Pb zircon geochronology. Episodes, 1997, 20: 188—192
[36]  8 Li X H, Li Z X, Zhou H, et al. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: Implications for the initial rifting of Rodinia. Precambrian Res, 2002, 113: 135—154
[37]  9 Li X H, Li Z X, Ge W, et al. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ac. 825 Ma? Precambrian Res, 2003, 122: 45—83
[38]  10 Li Z X, Zhang L H, Powell C M A. South China in Rodinia: Part of the missing link between Australia-East Antarctica and Laurentia? Geology, 1995, 23: 407—410
[39]  11 Li Z X, Zhang L H, Powell C M A. Positions of the East Asian cratons in the Neoproterozoic supercontinent Rodina. Aust J Earth Sci, 1996, 43: 593—604
[40]  12 Li Z X, Li X H, Zhou H, et al. Grenvillian continental collision in South China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology, 2002, 30: 163—166
[41]  27 郭令智, 施央申, 马瑞士. 华南大地构造格架和地壳演化. 国际交流地质学术论文集(1). 北京: 地质出版社, 1980. 109—116
[42]  28 舒良树, 施央申, 郭令智, 等. 江南中段板块-地体构造与碰撞造山运动学. 南京: 南京大学出版社, 1995. 1—174
[43]  29 Li X H. U-Pb zircon ages of granites from the southern margin of the Yangtze block: Timing of the Neoproterozoic Jinning orogeny in SE China and implications for Rodinia. Precambrain Res, 1999, 97: 43—57
[44]  30 舒良树, 卢华复, Charvet J, 等. 武夷山北缘断裂带运动学研究. 高校地质学报, 1997, 3: 282—292
[45]  36 Shu L S, Faure M, Wang B, et al. Late Paleozoic-early Mesozoic geological features of South China: Response to the Indosinian collision Event in Southeast Asia. C R Geosci, 2008, 340: 151—165
[46]  37 江西省地质矿产局. 江西省区域地质志. 北京: 地质出版社, 1984. 1—921
[47]  38 Shu L S, Faure M, Jiang S Y, et al. SHRIMP zircon U-Pb age, litho- and biostratigraphic analyses of the Huaiyu Domain in South China-Evidence for a Neoproterozoic orogen, not Late Paleozoic-Early Mesozoic collision. Episodes, 2006, 29: 244—252
[48]  39 楼法生, 沈渭洲, 王德滋, 等. 江西武功山穹隆复式花岗岩的锆石U-Pb年代学研究. 地质学报, 2005, 79: 636—644
[49]  40 Corfu F, Hanchar J M, Hoskin P W O, et al. Altas of zircon textures. Rev Mineral Geochem, 2003, 53: 469—500
[50]  41 Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ U-Pb zircon geochronology. Chem Geol, 2004, 211: 47—69
[51]  42 Black L P, Gulson B L. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. BMR J Aust Geol Geophys, 1978, 3: 227—232
[52]  43 Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Res, 2004, 131: 231—282
[53]  44 Wang X L, Zhou J C, Griffin W L, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia blocks. Precambrian Res, 2007, 159: 117—131
[54]  45 Andersen T. Correction of common Pb in U-Pb analyses that do not report 204Pb. Chem Geol, 2002, 192: 59—79
[55]  46 Ludwig K R. Users Manual for Isoplot/Ex (rev. 2. 49): A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronol Center Spec Publ, 2001, 1: 55
[56]  48 舒良树, 邓平, 于津海, 等. 武夷山西缘流纹岩的形成时代及其地球化学特征. 中国科学D辑: 地球科学, 2008, 51: 1053—1063
[57]  49 刘邦秀, 刘春根, 邱永泉. 江西南部鹤仔片麻状花岗岩类Pb-Pb同位素年龄及地质意义. 火山地质与矿产, 2001, 22: 264—268
[58]  50 王丽娟, 于津海, O’Reilly S Y, 等. 华夏南部可能存在Grenville期造山作用: 来自基底变质岩中锆石U-Pb定年及Lu-Hf同位素信息. 科学通报, 2008, 53: 1680—1692
[59]  51 Wan Y S, Liu D Y, Xu M H, et al. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia Block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Res, 2007, 12: 166—183
[60]  52 覃小锋, 潘元明, 李江, 等. 桂东南云开地区变质杂岩锆石SHRIMP U-Pb年代学. 地质通报, 2006, 25: 553—559
[61]  53 Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia: Did it start with a mantle plume beneath South China. Earth Planet Sci Lett, 1999, 173: 171—181
[62]  57 沈渭洲, 张芳荣, 舒良树, 等. 江西宁冈岩体的形成时代、地球化学特征及其构造意义. 岩石学报, 2008, 24: 2244—2254
[63]  58 程海, 胡世玲, 唐朝辉. 赣东北铁砂街群同位素年代. 地质通报, 1991, 2: 151—153
[64]  59 李曙光, 陈移之, 葛宁洁, 等. 浙西南八都群变火山岩系及变晶糜棱岩的同位素年龄及其构造意义. 岩石学报, 1996, 12: 79—87
[65]  60 李献华, 王一先, 赵振华, 等. 闽浙古元古代斜长角闪岩的离子探针锆石U-Pb年代学. 地球化学, 1998, 27: 327—334
[66]  61 甘晓春, 李惠民, 孙大中. 浙西南古元古代花岗质岩石的年代. 岩石矿物学杂志, 1995, 14: 1—8
[67]  62 甘晓春, 赵凤清, 金文山, 等. 华南火成岩中捕获锆石的早元古代-太古宙U-Pb年龄信息. 地球化学, 1996, 25: 112—119
[68]  63 胡雄健. 浙西南下元古界八都群的地质年代学. 地球化学, 1994, 23(增刊): 18—24
[69]  64 Li X H, Li Z X, Sinclair J A, et al. Revisiting the “Yanbian Terrane”: Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China. Precambrian Res, 2006, 151: 14—30
[70]  69 Mishra S, Deomurari M P, Wiedenbeck M, et al. 207Pb/206Pb zircons ages and the evolution of the Singhbhum Craton, eastern India: An ion microprobe study. Precambrian Res, 1999, 93: 139—151
[71]  70 Boger S D, Carson C J, Wilson C J L, et al. Neoproterozoic deformation in the Radok Lake region of the northern Prince Charles Mountains, east Antarctica: Evidence for a single protracted orogenic event. Precambrian Res, 2000, 104: 1—24
[72]  71 Jayananda M, Moyen J F, Martin H, et al. LateArchaean (2550—2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: Constraints fromgeochronology, Nd-Sr isotopes and whole rock geochemistry. Precambrian Res, 2000, 99: 225—254
[73]  72 Fitzsimons I C W. Grenville-age basement provinces in East Antarctica: Evidence for three separate collisional orogens. Geology, 2000, 28: 879—882
[74]  73 Kelly N M, Clarke G L, Fanning C M. A two-stage evolution of the Neoproterozoic Rayner structural episode: New U-Pb sensitive high resolution ion microprobe constraints from the Oygarden Group, Kemp Land, East Antarctica. Precambrian Res, 2002, 116: 307—330
[75]  74 Carson C J, Ague J J, Coath C D. U-Pb geochronology from Tonagh Island, East Antarctica: Implications for the timing of ultra-high temperature metamorphism of the Napier complex. Precambrian Res, 2002, 116: 237—263
[76]  75 Mondal M E A, Goswami J N, Deomurari M P, et al. Ion microprobe 207Pb/206Pb ages of zircons from the Bundelkhand massif, northern India: Implications for crustal evolution of the Bundelkhand-Aravalli protocontinent. Precambrian Res, 2002, 117: 85—100
[77]  76 Hokada T, Misawa K, Shiraishi K, et al. Mid to late Archaean (3.3—2.5 Ga) tonalitic crustal formation and high-grade metamorphism at Mt. Riiser-Larsen, Napier Complex, East Antarctica. Precambrian Res, 2003, 127: 215—228
[78]  77 Hokada T, Misawa K, Yokoyama K, et al. SHRIMP andelectron microprobe chronology of UHT metamorphism in the Napier complex, East Antarctica: Implications for zircon growth at >1000℃. Contrib Mineral Petrol, 2004, 147: 1—20
[79]  78 Gehrels G E, DeCelles P G, Martin A, et al. Initiation of the Himalayan Orogen as an Early Paleozoic thin-skinned thrust belt. GSA Today, 2003, 13: 4—9
[80]  79 Myrow P M, Hughes N C, Paulsen T S, et al. Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth Planet Sci Lett, 2003, 212: 433—441
[81]  80 Veevers J J, Saeed A, Belousova E A, et al. U-Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton. Earth Sci Rev, 2005, 68: 245—279
[82]  81 Ireland T R, Flottmann T, Fanning, C M, et al. Development of the Early Paleozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian Orogen. Geology, 1998, 26: 243—246
[83]  82 Berry R, Jenner G A, Meffre S, et al. A North American provenance for Neoproterozoic to Cambrian sandstones in Tasmania? Earth Planet Sci Lett, 2001, 192: 207—222

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133