1 汪品先. 穿凿地球系统的时间隧道. 中国科学 D 辑: 地球科学, 2009, 39: 1313—1338
[2]
2 汪品先. 地球深部与表层的相互作用. 地球科学进展, 2009, 24: 1331—1338
[3]
3 Anbar A D, Knoll A H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 2002, 297: 1137—1142
[4]
4 Hallam A, Wignall P B. Mass extinctions and sea-level changes. Earth-Sci Rev, 1999, 48: 217—250
[5]
5 Erwin D H. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. New Jersey: Princeton University Press, 2006. 296
[6]
6 McGhee G R. The Late Devonian Mass Extinction. New York: Columbia University Press, 1996. 303
[7]
7 Zhou M F, Malpas J, Song X Y, et al. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth Planet Sci Lett, 2002, 196: 113—122
[8]
8 Sepkoski J J Jr. A factor analytic description of the Phanerozoic marine record. Paleobiology, 1981, 7: 35—53
[9]
9 Bambach R K. Phanerozoic biodiversity mass extinctions. Annu Rev Earth Planet Sci, 2006, 34: 127—155
[10]
10 Knoll A H, Bambach R K, Canfield D E, et al. Comparative Earth history and Late Permian mass extinction. Science, 1996, 273: 452—457
[11]
11 Zhu M Y, Zhang J M, Yang A H. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeogr Palaeoclim Palaeoecol, 2007, 254: 7—61
[12]
12 Grossman E L, Yancey T E, Jones T E, et al. Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. Palaeogeogr Palaeoclim Palaeoecol, 2008, 268: 222—233
[13]
13 Shen S Z, Henderson C M, Bowring S A, et al. High-resolution Lopingian (Late Permian) timescale of South China. Geol J, 2010, 45: 122—134
[14]
14 Payne J L, Lehrmann D J, Wei J Y, et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science, 2004, 305: 506—509
[15]
21 Marshall C R. Explaining the Cambrian “explosion” of animals. Annu Rev Earth Planet Sci, 2006, 34: 355—384
[16]
22 Knoll A H, Carroll S B. Early animal evolution: Emerging views from comparative biology and geology. Science, 1999, 284: 2129—2137
[17]
23 陈均远. 动物世界的黎明. 南京: 江苏科学技术出版社, 2004. 366
[18]
24 Zhu M Y, Strauss H, Shields G A. From snowball Earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian Earth history in South China. Palaeogeogr Palaeoclim Palaeoecol, 2007, 254: 1—6
[19]
25 Chen J Y, Bottjer D J, Davidson E H, et al. Phosphatized polar lobe-forming embryos from the Precambrian of Southwest China. Science, 2006, 312: 1644—1646
[20]
26 Li G X, Steiner M, Zhu X J, et al. Early Cambrian metazoan fossil record of South China: Generic diversity and radiation patterns. Palaeogeogr Palaeoclim Palaeoecol, 2007, 254: 229—249
[21]
32 Condon D, Zhu M Y, Bowring S A, et al. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308: 95—98
[22]
33 Braiser M D. The basal Cambrian transition and Cambrian bio-events (from terminal Proterozoic extinctions to Cambrian biomers). In: Walliser O H, ed. Global Events and Event Stratigraphy in the Phanerozoic. Berlin: Springer-Verlag, 1995. 113—118
[23]
34 Sokolov B S, Fedonkin M A. Global biological events in the late Precambrian. In: Walliser O H, ed. Global Bio-events: Lecture Notes in Earth Sciences 8. Berlin, Heidelberg, New York: Springer, 1986. 105—108
[24]
35 McMenamin M A S, McMenamin D L S. The Emergence of Animals: The Cambrian Breakthrough. New York: Columbia University Press, 1989. 217
[25]
36 Zhu M Y. Precambrian-Cambrian trace fossils from eastern Yunnan: Implications for Cambrian explosion. Bull Nat Mus Nat Sci, 1997, 10: 275—312
[26]
37 Bottjer D J, Hagadorn J W, Dornbos S Q. The Cambrian substrate revolution. GSA Today, 2000, 10: 1—7
[27]
38 Valentine J W. Prelude to the Cambrian explosion. Annu Rev Earth Plenat Sci, 2002, 30: 285—306
[28]
39 Meert J G, Lieberman B S. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation. Gondwana Res, 2008, 14: 5—21
[29]
40 Shu D G. Cambrian explosion: Birth of tree of animals. Gondwana Res, 2008, 14: 219—240
[30]
41 Sepkoski J J Jr. A compendium of fossil marine animal families. Milwaukee Public Mus Contrib Biol Geol, 1992, 83: 1—156
[31]
42 Rong J Y, Fan J X, Miller A I, et al. Dynamic patterns of latest Proterozoic-Palaeozoic-Early Mesozoic marine biodiversity in South China. Geol J, 2007, 42: 431—454
[32]
43 Hallam A, Wignall P B. Mass Extinctions and Their Aftermath. Oxford: Oxford University Press, 1997. 320
[33]
44 Jin Y G. Pre-Lopingian benthos crisis. Comptes Rendus XII ICC-P 2, 1993, 2: 269—278
[34]
45 Shen S Z, Zhang H, Li W Z, et al. Brachiopod diversity patterns from Carboniferous to Triassic in South China. Geol J, 2006, 41: 345—361
[35]
46 Jin Y G, Zhang J, Shang Q H. Two phases of the end-Permian mass extinction. In: Embry A F, Beauchamp B, Glass D J, eds. Pangea: Global Environments and Resources. Can Soc Petrol Geol, 1994, 17: 813—822
[36]
47 Stanley S M, Yang X N. A double mass extinction at the end of the Paleozoic Era. Science, 1994, 266: 1340—1344
[37]
48 Shen S Z, Shi G R. Paleobiogeographical extinction patterns of Permian brachiopods in the Asian-western Pacific region. Paleobiology, 2002, 28: 449—463
[38]
49 Wang X D, Sugiyama T. Diversity and extinction patterns of Permian coral faunas of China. Lethaia, 2000, 33: 285—294
[39]
50 Shen S Z, Shi G R. Latest Guadalupian brachiopods from the Guadalupian/Lopingian boundary GSSP section at Penglaitan in Laibin, Guangxi, South China and implications for the timing of the pre-Lopingian crisis. Palaeoworld, 2009, 18: 152—161
[40]
51 Yang X N, Liu J R, Shi G J. Extinction process and patterns of Middle Permian fusulinaceans in southwest China. Lethaia, 2004, 37: 139—147
[41]
52 Droser M L, Bottjer D J, Sheehan P M. Evaluating the ecological architecture of major events in the Phanerozoic history of marine invertebrate life. Geology, 1997, 25: 167—170
[42]
53 Jin Y G, Wang Y, Wang W, et al. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 2000, 289: 432—436
[43]
54 Retallack G J. Permian-Triassic life crisis on land. Science, 1995, 267: 77—80
[44]
55 Lehrmann D J, Ramezani J, Bowring S A, et al. Timing of recovery from the end-Permian extinction: Geochronologic and biostratigraphic constraints from south China. Geology, 2006, 34: 1053—1056
[45]
56 Grice K, Cao C Q, Love G D, et al. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 2005, 307: 706—709
[46]
57 Xie S C, Pancost R D, Yin H F, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 2005, 434: 494—497
[47]
58 Cao C Q, Love G D, Hays L E, et al. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet Sci Lett, 2009, 281: 188—201
60 Piper J D A. The Neoproterozoic supercontinent: Rodinia or palaeopangaea? Earth Planet Sci Lett, 2000, 176: 131—146
[50]
61 Hoffman P F. The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. J Afr Earth Sci, 1999, 28: 17—33
[51]
62 Meert J G, Lieberman B S. A palaeomagnetic and paleobiogeographical perspective on latest Neoproterozoic and early Cambrian tectonic events. J Geol Soc London, 2004, 161: 477—487
[52]
63 Evans D A D. A fundamental Precambrian-Phanerozoic shift in Earth’s glacial style? Tectonophysics, 2003, 375: 353—385
[53]
64 Zheng Y F, Wu Y B, Gong B, et al. Tectonic driving of Neoproterozoic glaciations: Evidence from extreme oxygen isotope signature of meteoric water in granite. Earth Planet Sci Lett, 2007, 256: 196—210
[54]
65 Boyle R A, Lenton T M, Williams H T P. Neoproterozoic ‘snowball Earth’ glaciations and the evolution of altruism. Geobiology, 2007, 5: 337—349
[55]
66 Yin L M, Zhu M Y, Knoll A H, et al. Doushantuo embryos preserved inside diapause egg cysts. Nature, 2007, 446: 661—663
68 Eyles N, Eyles C H. Glacially-influenced deep-marine sedimentation of the late Precambrian Gaskiers Formation, Newfoundland, Canada. Sedimentology, 1989, 36: 601—620
[58]
69 Scotese C R, Langford R P. Pangea and the paleogeography of the Permian. In: Scholle P A, Peryt T M, Ulmer-Scholle D S, eds. The Permian of Northern Pangea, Volume 1: Paleogeography, Paleoclimates, Stratigraphy. Berlin: Springer-Verlag, 1995. 3—19
[59]
70 Ziegler A M, Hulver M L, Rowley D B. Permian world topography and climate. In: Martini I P, ed. Late Glacial and Postglacial Environmental Changes—Quaternary, Carboniferous-Permian and Proterozoic. New York: Oxford University Press, 1997. 111—146
[60]
71 Renne P R, Zhang Z C, Richards M A, et al. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. Science, 1995, 269: 1413—1416
[61]
72 Bowring S A, Erwin D H, Jin Y G, et al. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science, 1998, 280: 1039—1045
[62]
73 Korte C, Pande P, Kalia P, et al. Massive volcanism at the Permian-Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere. J Asian Earth Sci, 2010, 37: 293—311
[63]
74 Poulsen C J, Pollard D, Montanez I P, et al. Late Paleozoic tropical climate response to Gondwanan deglaciation. Geology, 2007, 35: 771—774
[64]
75 Veevers J J. Gondwanaland from 650—500 Ma assembly through 320 Ma merger in Pangea to 185—100 Ma breakup: Supercontinental tectonics via stratigraphy and radiometric dating. Earth-Sci Rev, 2004, 68: 1—132
[65]
76 Isbell J L, Lenaker P A, Askin R A, et al. Reevaluation of the timing and extent of late Paleozoic glaciation in Gondwana: Role of the Transantarctic Mountains. Geology, 2003, 31: 977—980
[66]
77 Isozaki Y, Kawahata H, Minoshima K. The Capitanian (Permian) Kamura cooling event: The beginning of the Paleozoic-Mesozoic transition. Palaeoworld, 2007, 16: 16—30
[67]
78 Ishikawa T, Ueno Y, Komiya T, et al. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: Prominent global-scale isotope excursions just before the Cambrian Explosion. Gondwana Res, 2008, 14: 193—208
[68]
79 McFadden K A, Huang J, Chu X L, et al. Pulsed oxidation and bioloical evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA, 2008, 105: 3197—3202
[69]
80 Chu X L, Zhang Q R, Zhang T G, et al. Sulfur and carbon isotopic variations in Neoproterozoic sedimentary rocks from southern China. Prog Nat Sci, 2003, 13: 875—880
82 Shen Y, Zhao R, Chu X L, et al. The carbon and sulfur isotope signatures in the Precambrian-Cambrian Transition series of the Yangtze Platform. Precambrian Res, 1998, 89: 77—86
[72]
83 Goldberg T, Strauss H, Guo Q J, et al. Late Neoproterozoic to early Cambrian sulphur cycle-An isotopic investigation of sedimentary rocks from the Yangtze Platform. Prog Nat Sci, 2003, 13: 946—950
[73]
84 Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran Ocean. Science, 2010, 328: 80—83
[74]
85 Halverson G P, Dudas F O, Maloof A C, et al. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr Palaeoclim Palaeoecol, 2007, 256: 103—129
[75]
86 Sawaki Y, Ohno T, Fukushi Y, et al. Sr isotope excursion across the Precambrian-Cambrian boundary in the Three Gorges area, South China. Gondwana Res, 2008, 14: 134—147
[76]
87 Shen Y. C-isotope variations and paleoceanographic changes during the late Neoproterozoic on the Yangtze Platform, China. Precambrian Res, 2002, 113: 121—133
[77]
88 Korte C, Jasper T, Kozur H W, et al. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeogr Palaeoclim Palaeoecol, 2005, 224: 333—351
[78]
89 Kaiho K, Chen Z Q, Ohashi T, et al. A negative carbon isotope anomaly associated with the earliest Lopingian (Late Permian) mass extinction. Palaeogeogr Palaeoclim Palaeoecol, 2005, 223: 172—180
[79]
90 Wang W, Cao C Q, Wang Y. The carbon isotope excursion on GSSP candidate section of Lopingian-Guadalupian boundary. Earth Planet Sci Lett, 2004, 220: 57—67
[80]
91 Korte C, Kozur H W. Carbon-isotope stratigraphy across the Permian-Triassic boundary: A review. J Asian Earth Sci, 2010, 39: 215—235
[81]
92 Korte C, Jasper T, Kozur H W, et al. 87Sr/86Sr record of Permian seawater. Palaeogeogr Palaeoclim Palaeoecol, 2006, 240: 89—107
[82]
93 Kaiho K, Chen Z Q, Kawahata H, et al. Close-up of the end-Permian mass extinction horizon recorded in the Meishan section, South China: Sedimentary, elemental, and biotic characterization and a negative shift of sulfate sulfur isotope ratio. Palaeogeogr Palaeoclim Palaeoecol, 2006, 239: 396—405
[83]
94 Wignall P B, Twitchett R J. Oceanic anoxia and the end Permian mass extinction. Science, 1996, 272: 1155—1158
[84]
95 Isozaki Y. Permo-Triassic boundary superanoxia and stratified superocean: Records from lost deep sea. Science, 1997, 276: 235—238
[85]
96 Shen Y, Schidlowski M, Chu X L. Biogeochemical approach to understanding phosphogenic events of the terminal Proterozoic to Cambrian. Palaeogeogr Palaeoclim Palaeoecol, 2000, 158: 99—108
[86]
97 Kump L R. The rise of atmospheric oxygen. Nature, 2008, 451: 277—278
[87]
98 Canfield D E, Poulton S W, Narbonne G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 2007, 315: 92—95
[88]
99 Neal C R, Coffin M F, Arndt N T, et al. Investigating large igneous province formation and associated paleoenvironmental events: A white paper for scientific drilling. Scient Drilling, 2008, 6: 4—18
[89]
100 Payne J L, Lehrmann D J, Follett D, et al. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events. Geol Soc Am Bull, 2007, 119: 771—784
[90]
101 Santosh M. A synopsis of recent conceptual models on supercontinent tectonics in relation to mantle dynamics, life evolution and surface environment. J Geodyn, 2010, 50: 116—133
[91]
102 Ernst R E, Wingate M T D, Buchan K L, et al. Global record of 1600—700 Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Res, 2008, 160: 159—178
[92]
103 Wang X C, Li X H, Li W X, et al. Variable involvements of mantle plumes in the genesis of mid-Neoproterozoic basaltic rocks in South China: A review. Gondwana Res, 2009, 15: 381—395
[93]
104 Wang X C, Li X H, Li W X, et al. The Bikou basalts in the northwestern Yangtze Block, South China: Remnants of 820–810 Ma continental flood basalts? GSA Bull, 2008, 120: 1478—1492
[94]
105 Haag M, Heller F. Late Permian to Early Triassic magnetostratigraphy. Earth Planet Sci Lett, 1991, 107: 42—54
[95]
106 Kirschvink J L, Raub T D. A methane fuse for the Cambrian explosion: Carbon cycles and true polar wander. Compt Rend Geosci, 2003, 335: 65—78
[96]
107 Mitchell R N, Evans D A D, Kilian T M. Rapid Early Cambrian rotation of Gondwana. Geology, 2010, 38: 755—758
[97]
108 Wang J S, Jiang G Q, Xiao S H, et al. Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in south China. Geology, 2008, 36: 347—350
[98]
109 Rong J Y, Harper D A T. A global synthesis of the latest Ordovician Hirnantian brachiopod faunas. Trans R Soc Edinb-Earth Sci, 1988, 79: 383—402
[99]
110 Alroy J, Aberhan M, Bottjer D J, et al. Phanerozoic trends in the global diversity of marine invertebrates. Science, 2008, 321: 97—100
[100]
111 Wang X D, Wang X J, Zhang F, et al. Diversity patterns of Carboniferous and Permian rugose corals in South China. Geol J, 2006, 41: 329—343
[101]
112 Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol, 1999, 161: 59—88
[102]
15 Gradstein F M, Ogg J G, Smith A G. A Geologic Time Scale 2004. Cambridge: Cambridge University Press, 2004. 589
[103]
16 Mundil R, Palfy J, Renne P R, et al. The Triassic timescale: New constraints and a review of geochronological data. Geol Soc London Spec Publ, 2010, 334: 41—60
[104]
17 Erwin D H. Biospheric perturbations during Gondwanan times: From the Neoproterozoic-Cambrian radiation to the end-Permian crisis. J Afr Earth Sci, 1999, 28: 115—127
[105]
18 Kimura H, Watanabe Y. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology, 2001, 29: 995—998
[106]
19 Erwin D H, Valentine J W, Sepkoski J J Jr. A comparative study of diversification events—The Early Paleozoic versus the Mesozoic. Evolution, 1987, 41: 1177—1186
[107]
20 Grotzinger J P, Knoll A H. Anomalous carbonate precipitates: Is the precambrian the key to the Permian? Palaios, 1995, 10: 578—596
[108]
27 Shen B, Dong L, Xiao S H, et al. The Avalon explosion: Evolution of Ediacara morphospace. Science, 2008, 319: 81—84
[109]
28 Yuan X L, Xiao S H, Taylor T N. Lichen-like symbiosis 600 million years ago. Science, 2005, 308: 1017—1020
[110]
29 Fedonkin M A, Gehling J G, Grey K, et al. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. Baltimore: Johns Hopkins University Press, 2003. 343
[111]
30 Chen J Y. The sudden appearance of diverse animal body plans during the Cambrian explosion. Int J Dev Biol, 2009, 53: 733—751
[112]
31 Zhou C M, Xie G W, McFadden K, et al. The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: Causes and biostratigraphic significance. Geol J, 2007, 42: 229—262