全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新元古代-寒武纪与二叠-三叠纪转折时期生物和地质事件及其环境背景之比较

, PP. 1228-1240

Keywords: 新元古代-寒武纪,二叠-三叠纪,转折时期,生物事件,地质事件,环境背景

Full-Text   Cite this paper   Add to My Lib

Abstract:

?新元古代-寒武纪和二叠-三叠纪转折时期由于分别发生了最为壮观的生物辐射事件(寒武纪生物大爆发)和最具灾难性的生物灭绝事件(二叠纪末生物大灭绝),被认为是地球生命演化史中两个最为关键的转折时段.然而,最新的一些研究表明新元古代-寒武纪和二叠-三叠纪转折时期的地质与生物演化历史具有一定的相似性,许多新元古代-寒武纪之交发生的重大生物与地质事件在古生代-中生代之交重复发生,这些事件包括与地球深部地幔柱活动有关的地表大陆重组、大规模冰川的形成和消融、与地表和大气环境变化密切相关的C,Sr,S同位素波动、碳酸盐岩的异常沉积以及生物的多次辐射和大规模灭绝等.这些事件的重复发生表明地球深部活动是地表环境发生急剧变化的主要动因,而地表环境的改变导致生物多样性发生剧变.进一步深入比较表明,这两个转折时期虽然发生重复性的重大生物、地质和地球化学异常事件,但具体型式、幅度和过程有明显差别.新元古代的Rodinia大陆在雪球事件以前就已经开始解体,而石炭纪至二叠纪的Pangea大陆在大冰期以后才开始裂解.生物更替的水平比较表明新元古代-寒武纪之交主要反映在埃迪卡拉生物群的集群灭绝和大量新的生物门类占领新的生态空间,是一级新的生态系统的形成过程;而二叠纪末生物大灭绝虽然造成大量生物灭绝、造礁作用和成煤作用停止,但主要反映在纲和目一级生物类群的灭绝与新生,大灭绝后,残存的生物在早三叠世晚期开始重新占领生态空间,复苏时间也远远短于寒武纪早期的小壳动物发展阶段,是一种生态系统结构组成的重大变化.与生物大规模更替相伴生的两个关键转折时期的碳同位素等均发生了强烈波动,但波动的幅度和频率有所不同,说明当时的大气和海水介质条件和地质背景均存在明显差别.超级联合古陆、大规模的冰期形成和消融、C,Sr和S等同位素的强烈波动以及生物多次大灭绝和辐射等重复发生在新元古代-寒武纪与二叠-三叠纪转折时期给我们带来了新的思考,从地球系统整体观出发,开展从地球深部到地表过程的交叉合作研究对认识地球系统各个圈层的相互作用具有重要意义.

References

[1]  1 汪品先. 穿凿地球系统的时间隧道. 中国科学 D 辑: 地球科学, 2009, 39: 1313—1338
[2]  2 汪品先. 地球深部与表层的相互作用. 地球科学进展, 2009, 24: 1331—1338
[3]  3 Anbar A D, Knoll A H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 2002, 297: 1137—1142
[4]  4 Hallam A, Wignall P B. Mass extinctions and sea-level changes. Earth-Sci Rev, 1999, 48: 217—250
[5]  5 Erwin D H. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. New Jersey: Princeton University Press, 2006. 296
[6]  6 McGhee G R. The Late Devonian Mass Extinction. New York: Columbia University Press, 1996. 303
[7]  7 Zhou M F, Malpas J, Song X Y, et al. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth Planet Sci Lett, 2002, 196: 113—122
[8]  8 Sepkoski J J Jr. A factor analytic description of the Phanerozoic marine record. Paleobiology, 1981, 7: 35—53
[9]  9 Bambach R K. Phanerozoic biodiversity mass extinctions. Annu Rev Earth Planet Sci, 2006, 34: 127—155
[10]  10 Knoll A H, Bambach R K, Canfield D E, et al. Comparative Earth history and Late Permian mass extinction. Science, 1996, 273: 452—457
[11]  11 Zhu M Y, Zhang J M, Yang A H. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeogr Palaeoclim Palaeoecol, 2007, 254: 7—61
[12]  12 Grossman E L, Yancey T E, Jones T E, et al. Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. Palaeogeogr Palaeoclim Palaeoecol, 2008, 268: 222—233
[13]  13 Shen S Z, Henderson C M, Bowring S A, et al. High-resolution Lopingian (Late Permian) timescale of South China. Geol J, 2010, 45: 122—134
[14]  14 Payne J L, Lehrmann D J, Wei J Y, et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science, 2004, 305: 506—509
[15]  21 Marshall C R. Explaining the Cambrian “explosion” of animals. Annu Rev Earth Planet Sci, 2006, 34: 355—384
[16]  22 Knoll A H, Carroll S B. Early animal evolution: Emerging views from comparative biology and geology. Science, 1999, 284: 2129—2137
[17]  23 陈均远. 动物世界的黎明. 南京: 江苏科学技术出版社, 2004. 366
[18]  24 Zhu M Y, Strauss H, Shields G A. From snowball Earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian Earth history in South China. Palaeogeogr Palaeoclim Palaeoecol, 2007, 254: 1—6
[19]  25 Chen J Y, Bottjer D J, Davidson E H, et al. Phosphatized polar lobe-forming embryos from the Precambrian of Southwest China. Science, 2006, 312: 1644—1646
[20]  26 Li G X, Steiner M, Zhu X J, et al. Early Cambrian metazoan fossil record of South China: Generic diversity and radiation patterns. Palaeogeogr Palaeoclim Palaeoecol, 2007, 254: 229—249
[21]  32 Condon D, Zhu M Y, Bowring S A, et al. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308: 95—98
[22]  33 Braiser M D. The basal Cambrian transition and Cambrian bio-events (from terminal Proterozoic extinctions to Cambrian biomers). In: Walliser O H, ed. Global Events and Event Stratigraphy in the Phanerozoic. Berlin: Springer-Verlag, 1995. 113—118
[23]  34 Sokolov B S, Fedonkin M A. Global biological events in the late Precambrian. In: Walliser O H, ed. Global Bio-events: Lecture Notes in Earth Sciences 8. Berlin, Heidelberg, New York: Springer, 1986. 105—108
[24]  35 McMenamin M A S, McMenamin D L S. The Emergence of Animals: The Cambrian Breakthrough. New York: Columbia University Press, 1989. 217
[25]  36 Zhu M Y. Precambrian-Cambrian trace fossils from eastern Yunnan: Implications for Cambrian explosion. Bull Nat Mus Nat Sci, 1997, 10: 275—312
[26]  37 Bottjer D J, Hagadorn J W, Dornbos S Q. The Cambrian substrate revolution. GSA Today, 2000, 10: 1—7
[27]  38 Valentine J W. Prelude to the Cambrian explosion. Annu Rev Earth Plenat Sci, 2002, 30: 285—306
[28]  39 Meert J G, Lieberman B S. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation. Gondwana Res, 2008, 14: 5—21
[29]  40 Shu D G. Cambrian explosion: Birth of tree of animals. Gondwana Res, 2008, 14: 219—240
[30]  41 Sepkoski J J Jr. A compendium of fossil marine animal families. Milwaukee Public Mus Contrib Biol Geol, 1992, 83: 1—156
[31]  42 Rong J Y, Fan J X, Miller A I, et al. Dynamic patterns of latest Proterozoic-Palaeozoic-Early Mesozoic marine biodiversity in South China. Geol J, 2007, 42: 431—454
[32]  43 Hallam A, Wignall P B. Mass Extinctions and Their Aftermath. Oxford: Oxford University Press, 1997. 320
[33]  44 Jin Y G. Pre-Lopingian benthos crisis. Comptes Rendus XII ICC-P 2, 1993, 2: 269—278
[34]  45 Shen S Z, Zhang H, Li W Z, et al. Brachiopod diversity patterns from Carboniferous to Triassic in South China. Geol J, 2006, 41: 345—361
[35]  46 Jin Y G, Zhang J, Shang Q H. Two phases of the end-Permian mass extinction. In: Embry A F, Beauchamp B, Glass D J, eds. Pangea: Global Environments and Resources. Can Soc Petrol Geol, 1994, 17: 813—822
[36]  47 Stanley S M, Yang X N. A double mass extinction at the end of the Paleozoic Era. Science, 1994, 266: 1340—1344
[37]  48 Shen S Z, Shi G R. Paleobiogeographical extinction patterns of Permian brachiopods in the Asian-western Pacific region. Paleobiology, 2002, 28: 449—463
[38]  49 Wang X D, Sugiyama T. Diversity and extinction patterns of Permian coral faunas of China. Lethaia, 2000, 33: 285—294
[39]  50 Shen S Z, Shi G R. Latest Guadalupian brachiopods from the Guadalupian/Lopingian boundary GSSP section at Penglaitan in Laibin, Guangxi, South China and implications for the timing of the pre-Lopingian crisis. Palaeoworld, 2009, 18: 152—161
[40]  51 Yang X N, Liu J R, Shi G J. Extinction process and patterns of Middle Permian fusulinaceans in southwest China. Lethaia, 2004, 37: 139—147
[41]  52 Droser M L, Bottjer D J, Sheehan P M. Evaluating the ecological architecture of major events in the Phanerozoic history of marine invertebrate life. Geology, 1997, 25: 167—170
[42]  53 Jin Y G, Wang Y, Wang W, et al. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 2000, 289: 432—436
[43]  54 Retallack G J. Permian-Triassic life crisis on land. Science, 1995, 267: 77—80
[44]  55 Lehrmann D J, Ramezani J, Bowring S A, et al. Timing of recovery from the end-Permian extinction: Geochronologic and biostratigraphic constraints from south China. Geology, 2006, 34: 1053—1056
[45]  56 Grice K, Cao C Q, Love G D, et al. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 2005, 307: 706—709
[46]  57 Xie S C, Pancost R D, Yin H F, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 2005, 434: 494—497
[47]  58 Cao C Q, Love G D, Hays L E, et al. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet Sci Lett, 2009, 281: 188—201
[48]  59 吴亚生, 姜红霞, Yang W, 等. 二叠纪-三叠纪之交缺氧环境的微生物和微生物岩. 中国科学D辑: 地球科学, 2007, 37: 618—628
[49]  60 Piper J D A. The Neoproterozoic supercontinent: Rodinia or palaeopangaea? Earth Planet Sci Lett, 2000, 176: 131—146
[50]  61 Hoffman P F. The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. J Afr Earth Sci, 1999, 28: 17—33
[51]  62 Meert J G, Lieberman B S. A palaeomagnetic and paleobiogeographical perspective on latest Neoproterozoic and early Cambrian tectonic events. J Geol Soc London, 2004, 161: 477—487
[52]  63 Evans D A D. A fundamental Precambrian-Phanerozoic shift in Earth’s glacial style? Tectonophysics, 2003, 375: 353—385
[53]  64 Zheng Y F, Wu Y B, Gong B, et al. Tectonic driving of Neoproterozoic glaciations: Evidence from extreme oxygen isotope signature of meteoric water in granite. Earth Planet Sci Lett, 2007, 256: 196—210
[54]  65 Boyle R A, Lenton T M, Williams H T P. Neoproterozoic ‘snowball Earth’ glaciations and the evolution of altruism. Geobiology, 2007, 5: 337—349
[55]  66 Yin L M, Zhu M Y, Knoll A H, et al. Doushantuo embryos preserved inside diapause egg cysts. Nature, 2007, 446: 661—663
[56]  67 袁训来, 肖书海, 尹磊明, 等. 陡山陀期生物群—早期动物辐射前夕的生命. 合肥: 中国科学技术大学出版社, 2002. 171
[57]  68 Eyles N, Eyles C H. Glacially-influenced deep-marine sedimentation of the late Precambrian Gaskiers Formation, Newfoundland, Canada. Sedimentology, 1989, 36: 601—620
[58]  69 Scotese C R, Langford R P. Pangea and the paleogeography of the Permian. In: Scholle P A, Peryt T M, Ulmer-Scholle D S, eds. The Permian of Northern Pangea, Volume 1: Paleogeography, Paleoclimates, Stratigraphy. Berlin: Springer-Verlag, 1995. 3—19
[59]  70 Ziegler A M, Hulver M L, Rowley D B. Permian world topography and climate. In: Martini I P, ed. Late Glacial and Postglacial Environmental Changes—Quaternary, Carboniferous-Permian and Proterozoic. New York: Oxford University Press, 1997. 111—146
[60]  71 Renne P R, Zhang Z C, Richards M A, et al. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. Science, 1995, 269: 1413—1416
[61]  72 Bowring S A, Erwin D H, Jin Y G, et al. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science, 1998, 280: 1039—1045
[62]  73 Korte C, Pande P, Kalia P, et al. Massive volcanism at the Permian-Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere. J Asian Earth Sci, 2010, 37: 293—311
[63]  74 Poulsen C J, Pollard D, Montanez I P, et al. Late Paleozoic tropical climate response to Gondwanan deglaciation. Geology, 2007, 35: 771—774
[64]  75 Veevers J J. Gondwanaland from 650—500 Ma assembly through 320 Ma merger in Pangea to 185—100 Ma breakup: Supercontinental tectonics via stratigraphy and radiometric dating. Earth-Sci Rev, 2004, 68: 1—132
[65]  76 Isbell J L, Lenaker P A, Askin R A, et al. Reevaluation of the timing and extent of late Paleozoic glaciation in Gondwana: Role of the Transantarctic Mountains. Geology, 2003, 31: 977—980
[66]  77 Isozaki Y, Kawahata H, Minoshima K. The Capitanian (Permian) Kamura cooling event: The beginning of the Paleozoic-Mesozoic transition. Palaeoworld, 2007, 16: 16—30
[67]  78 Ishikawa T, Ueno Y, Komiya T, et al. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: Prominent global-scale isotope excursions just before the Cambrian Explosion. Gondwana Res, 2008, 14: 193—208
[68]  79 McFadden K A, Huang J, Chu X L, et al. Pulsed oxidation and bioloical evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA, 2008, 105: 3197—3202
[69]  80 Chu X L, Zhang Q R, Zhang T G, et al. Sulfur and carbon isotopic variations in Neoproterozoic sedimentary rocks from southern China. Prog Nat Sci, 2003, 13: 875—880
[70]  81 张同钢, 储雪蕾, 冯连君, 等. 新元古代 “雪球事件”事件对海水碳、硫同位素组成的影响. 地球学报, 2003, 26: 487—493
[71]  82 Shen Y, Zhao R, Chu X L, et al. The carbon and sulfur isotope signatures in the Precambrian-Cambrian Transition series of the Yangtze Platform. Precambrian Res, 1998, 89: 77—86
[72]  83 Goldberg T, Strauss H, Guo Q J, et al. Late Neoproterozoic to early Cambrian sulphur cycle-An isotopic investigation of sedimentary rocks from the Yangtze Platform. Prog Nat Sci, 2003, 13: 946—950
[73]  84 Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran Ocean. Science, 2010, 328: 80—83
[74]  85 Halverson G P, Dudas F O, Maloof A C, et al. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr Palaeoclim Palaeoecol, 2007, 256: 103—129
[75]  86 Sawaki Y, Ohno T, Fukushi Y, et al. Sr isotope excursion across the Precambrian-Cambrian boundary in the Three Gorges area, South China. Gondwana Res, 2008, 14: 134—147
[76]  87 Shen Y. C-isotope variations and paleoceanographic changes during the late Neoproterozoic on the Yangtze Platform, China. Precambrian Res, 2002, 113: 121—133
[77]  88 Korte C, Jasper T, Kozur H W, et al. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeogr Palaeoclim Palaeoecol, 2005, 224: 333—351
[78]  89 Kaiho K, Chen Z Q, Ohashi T, et al. A negative carbon isotope anomaly associated with the earliest Lopingian (Late Permian) mass extinction. Palaeogeogr Palaeoclim Palaeoecol, 2005, 223: 172—180
[79]  90 Wang W, Cao C Q, Wang Y. The carbon isotope excursion on GSSP candidate section of Lopingian-Guadalupian boundary. Earth Planet Sci Lett, 2004, 220: 57—67
[80]  91 Korte C, Kozur H W. Carbon-isotope stratigraphy across the Permian-Triassic boundary: A review. J Asian Earth Sci, 2010, 39: 215—235
[81]  92 Korte C, Jasper T, Kozur H W, et al. 87Sr/86Sr record of Permian seawater. Palaeogeogr Palaeoclim Palaeoecol, 2006, 240: 89—107
[82]  93 Kaiho K, Chen Z Q, Kawahata H, et al. Close-up of the end-Permian mass extinction horizon recorded in the Meishan section, South China: Sedimentary, elemental, and biotic characterization and a negative shift of sulfate sulfur isotope ratio. Palaeogeogr Palaeoclim Palaeoecol, 2006, 239: 396—405
[83]  94 Wignall P B, Twitchett R J. Oceanic anoxia and the end Permian mass extinction. Science, 1996, 272: 1155—1158
[84]  95 Isozaki Y. Permo-Triassic boundary superanoxia and stratified superocean: Records from lost deep sea. Science, 1997, 276: 235—238
[85]  96 Shen Y, Schidlowski M, Chu X L. Biogeochemical approach to understanding phosphogenic events of the terminal Proterozoic to Cambrian. Palaeogeogr Palaeoclim Palaeoecol, 2000, 158: 99—108
[86]  97 Kump L R. The rise of atmospheric oxygen. Nature, 2008, 451: 277—278
[87]  98 Canfield D E, Poulton S W, Narbonne G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 2007, 315: 92—95
[88]  99 Neal C R, Coffin M F, Arndt N T, et al. Investigating large igneous province formation and associated paleoenvironmental events: A white paper for scientific drilling. Scient Drilling, 2008, 6: 4—18
[89]  100 Payne J L, Lehrmann D J, Follett D, et al. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events. Geol Soc Am Bull, 2007, 119: 771—784
[90]  101 Santosh M. A synopsis of recent conceptual models on supercontinent tectonics in relation to mantle dynamics, life evolution and surface environment. J Geodyn, 2010, 50: 116—133
[91]  102 Ernst R E, Wingate M T D, Buchan K L, et al. Global record of 1600—700 Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Res, 2008, 160: 159—178
[92]  103 Wang X C, Li X H, Li W X, et al. Variable involvements of mantle plumes in the genesis of mid-Neoproterozoic basaltic rocks in South China: A review. Gondwana Res, 2009, 15: 381—395
[93]  104 Wang X C, Li X H, Li W X, et al. The Bikou basalts in the northwestern Yangtze Block, South China: Remnants of 820–810 Ma continental flood basalts? GSA Bull, 2008, 120: 1478—1492
[94]  105 Haag M, Heller F. Late Permian to Early Triassic magnetostratigraphy. Earth Planet Sci Lett, 1991, 107: 42—54
[95]  106 Kirschvink J L, Raub T D. A methane fuse for the Cambrian explosion: Carbon cycles and true polar wander. Compt Rend Geosci, 2003, 335: 65—78
[96]  107 Mitchell R N, Evans D A D, Kilian T M. Rapid Early Cambrian rotation of Gondwana. Geology, 2010, 38: 755—758
[97]  108 Wang J S, Jiang G Q, Xiao S H, et al. Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in south China. Geology, 2008, 36: 347—350
[98]  109 Rong J Y, Harper D A T. A global synthesis of the latest Ordovician Hirnantian brachiopod faunas. Trans R Soc Edinb-Earth Sci, 1988, 79: 383—402
[99]  110 Alroy J, Aberhan M, Bottjer D J, et al. Phanerozoic trends in the global diversity of marine invertebrates. Science, 2008, 321: 97—100
[100]  111 Wang X D, Wang X J, Zhang F, et al. Diversity patterns of Carboniferous and Permian rugose corals in South China. Geol J, 2006, 41: 329—343
[101]  112 Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol, 1999, 161: 59—88
[102]  15 Gradstein F M, Ogg J G, Smith A G. A Geologic Time Scale 2004. Cambridge: Cambridge University Press, 2004. 589
[103]  16 Mundil R, Palfy J, Renne P R, et al. The Triassic timescale: New constraints and a review of geochronological data. Geol Soc London Spec Publ, 2010, 334: 41—60
[104]  17 Erwin D H. Biospheric perturbations during Gondwanan times: From the Neoproterozoic-Cambrian radiation to the end-Permian crisis. J Afr Earth Sci, 1999, 28: 115—127
[105]  18 Kimura H, Watanabe Y. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology, 2001, 29: 995—998
[106]  19 Erwin D H, Valentine J W, Sepkoski J J Jr. A comparative study of diversification events—The Early Paleozoic versus the Mesozoic. Evolution, 1987, 41: 1177—1186
[107]  20 Grotzinger J P, Knoll A H. Anomalous carbonate precipitates: Is the precambrian the key to the Permian? Palaios, 1995, 10: 578—596
[108]  27 Shen B, Dong L, Xiao S H, et al. The Avalon explosion: Evolution of Ediacara morphospace. Science, 2008, 319: 81—84
[109]  28 Yuan X L, Xiao S H, Taylor T N. Lichen-like symbiosis 600 million years ago. Science, 2005, 308: 1017—1020
[110]  29 Fedonkin M A, Gehling J G, Grey K, et al. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. Baltimore: Johns Hopkins University Press, 2003. 343
[111]  30 Chen J Y. The sudden appearance of diverse animal body plans during the Cambrian explosion. Int J Dev Biol, 2009, 53: 733—751
[112]  31 Zhou C M, Xie G W, McFadden K, et al. The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: Causes and biostratigraphic significance. Geol J, 2007, 42: 229—262

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133