全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

云南寒武纪早期澄江动物群古群落分析

, PP. 1135-1153

Keywords: 澄江动物群,寒武纪早期,帽天山,群落生态学

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本研究将澄江动物群分属于18个动物门和类群的228个化石物种区分为23个生态功能群,并依据澄江-海口-安宁地区野外系统采集的化石个体丰度数据(114个物种,18406个体),对寒武纪早期澄江动物群总体分异度、物种组成和结构以及生态类型进行了定量分析.结果显示节肢动物无论是物种丰度(37%)还是个体丰度(51.8%)都最为丰富,是动物群中的优势类群;曳鳃动物(22.6%)和腕足动物(16.3%)的个体丰度也相对较高.其中,节肢动物的Kunmingelladouvillei(26.2%)、曳鳃动物的Cricocosmiajinningensis(15.4%)、腕足动物的Diandongiapista(11%)是个体丰度最高三个物种,占整个动物群个体数量的52.6%.澄江动物群不同生活方式的各类生物定量分析表明,生物占据了海洋水体各空间领域,从底内生物到浮游生物都有化石代表.其中,以表栖动物为主(物种数=63%,个体数=68.4%),其次是底内动物(物种数=11.9%,个体数=25.9%).游泳动物(物种数=11.5%,个体数=2.6%)和浮游动物(物种数=5.3%,个体数=3.1%)化石保存较少.澄江动物群中动物的取食方式主要以滤食(物种数=35.6%,个体数=26.1%)和捕食/食腐(物种数=31.1%,个体数=40.4%)为主.物种丰度的最高生态功能群是表栖固着滤食类(18.5%)、表栖活动捕食或食腐类(16.3%)、表栖活动滤食类(7.9%)和近底游泳滤食类(6.6%),而个体丰度最高的生态功能群是表栖活动杂食类(28.2%)、内栖活动捕食或食腐类(19.8%)、表栖固着滤食类(17.7%)和表栖活动捕食或食腐类(15.3%).以上分析结果表明澄江动物群由丰富多样的门类和大量具有不同复杂生态功能的物种组成,证明了寒武纪早期物种间高强度捕食压力的存在,并形成了由多层次营养级结构构成的金字塔式复杂食物网,为寒武纪早期的物种多样性和复杂生态系统提供具体科学依据.

References

[1]  26 Leslie S A, Babcock L E, Zhang W T. Community composition and taphonomic overprint of the Chengjiang biota (Early Cambrian, China). In: Repetski J, ed. Sixth North American Paleontological Convention Abstract of Papers. Paleontol Soc Spec Publ, 1996, 8: 237
[2]  27 舒德干. 再论古虫动物门. 科学通报, 2005, 50: 2114—2126
[3]  28 Hou X G, Ramsk?ld L, Bergstr?m J. Composition and preservation of the Chengjiang fauna—A lower Cambrian soft-bodied biota. Zool Script, 1991, 20: 395—411
[4]  29 Chen J Y, Huang D Y, Li C W. An Early Cambrian craniate-like chordate. Nature, 1999, 402: 518—522
[5]  30 Chen J Y, Huang D Y, Peng Q Q, et al. The first tunicate from the Early Cambrian of South China. Proc Natl Acad Sci USA, 2003, 100: 8314—8318
[6]  31 Shu D G, Chen L, Han J, et al. An Early Cambrian tunicate from China. Nature, 2001, 411: 472—473
[7]  32 Shu D G, Conway M S, Han J, et al. Lower Cambrian vendobionts from China and Early diploblast evolution. Science, 2006, 312: 731—734
[8]  33 Magurran A E. Measuring Biological Diversity. Oxford: Blackwell Publishing Company, 2004. 256
[9]  34 Whittaker R H. Dominance and diversity in land plant communities. Science, 1965, 147: 250—260
[10]  35 韩建, 舒德干, 张志飞, 等. 早寒武世澄江化石库软躯体化石富集层研究初探. 科学通报, 2006, 51: 565—574
[11]  36 Brett C E, Seilacher A. Fossil Lagerst?tten: A taphonomic consequence of single-event sedimentation. In: Einsele G, Ricken W, Seilacher A, eds. Cycles and Single-events in Stratigraphy. New York: Springer-Verlag, 1991. 283—297
[12]  37 Steiner M, Zhu M Y, Zhao Y L, et al. Lower Cambrian Burgess shale-type fossil associations of South China. Palaeogeogr Palaeoclimat Palaeoecol, 2005, 220: 129—152
[13]  38 Dornbos S Q, Chen J Y. Community palaeoecology of the early Cambrian Maotianshan Shale biota: Ecological dominance of priapulid worms. Palaeogeogr Palaeoclimat Palaeoecol, 2008, 258: 200—212
[14]  39 赵方臣, 朱茂炎. 云南早寒武世澄江化石库中两种埋藏相的化石定量分析. 古生物学报, 2007, 46: 75—86
[15]  40 Simonetta A M, Emilio I. New animals from the Burgess Shale (Middle Cambrian) and their possible significance for the understanding of the Bilateria. Boll Zool, 1993, 60: 97—107
[16]  41 Briggs D E G, Erwin D H, Collier F J. The Fossils of the Burgess Shale. Washington D C: Smithsonian Institution Press, 1994. 238
[17]  42 Janvier P. Vertebrate characters and the Cambrian vertebrates. Compt Rend Palevol, 2003, 2: 523—531
[18]  43 Chen J Y, Dzik J, Edgecombe G D, et al. A possible Early Cambrian chordate. Nature, 1995, 377: 720—722
[19]  44 Chen J Y, Zhou G Q. Biology of the Chengjiang fauna. Bull Natl Mus Nat Sci-Taichung, 1997, 10: 11—106
[20]  45 Shu D G, Conway M S, Han J, et al. Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature, 2003, 421: 526—529
[21]  46 Mallatt J, Chen J Y. Fossil sister group of Craniates: Predicted and found. J Morphol, 2003, 258: 1—31
[22]  47 Shu D G, Conway M S, Zhang X L. A Pikaia-like chordate from the Lower Cambrian of China. Nature, 1996, 384: 157—158
[23]  48 Shu D G, Conway M S, Zhang Z F, et al. A new species of Yunnanozoan with implications for deuterostome evolution. Science, 2003, 299: 1380—1384
[24]  49 Shu D G, Conway M S. Response to comment on “a new species of Yunnanozoon with implications for deuterostome evolution”. Science, 2003, 300: 1372
[25]  50 Shu D G, Gonway M S, Zhang Z F, et al. The earliest history of the deuterostomes: The importance of the Chengjiang Fossil-Lagerst?tte. Proc R Soc B, 2010, 277: 165—174
[26]  51 Shu D G, Zhang X L, Chen L. Reinterpretation of Yunnanozoon as the earliest known hemichordate. Nature, 1996, 380: 428—430
[27]  52 Powell W G, Johnston P A, Collom C J. Geochemical evidence for oxygenated bottom waters during deposition of fossiliferous strata of the Burgess Shale Formation. Palaeogeogr Palaeoclimat Palaeoecol, 2003, 201: 249—268
[28]  53 Seilacher A. Biomat-related lifestyles in the Precambrian. Palaios, 1999, 14: 86—93
[29]  54 Bottjer D J, Hagadorn J W, Dornbos S Q. The Cambrian substrate revolution. GSA Today, 2000, 10: 1—7
[30]  55 Dornbos S Q, Bottjer D J, Chen J Y. Paleoecology of benthic metazoans in the Early Cambrian Maotianshan shale biota and the Middle Cambrian Burgess shale biota: Evidence for the Cambrian substrate revolution. Palaeogeogr Palaeoclimat Palaeoecol, 2005, 220: 47—67
[31]  56 Caron J B. Taphonomy and community analysis of the Middle Cambrian Greater Phyllopod Bed, Burgess Shale. Doctoral Dissertation. Toronto: University of Toronto, 2004
[32]  57 Dunne J A, Williams R J, Martinez N D, et al. Compilation and network analyses of Cambrian food webs. PLoS Biol, 2008, 6: e102. doi: 10.1371/journal.pbio.0060102
[33]  1 Zhu M Y, Babcock L E, Peng S C. Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction. Palaeoword, 2006, 15: 217—222
[34]  2 陈均远. 动物世界的黎明. 南京: 江苏科技出版社, 2004. 366
[35]  3 Hou X G, Aldridge R J, Bergstr?m J, et al. The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life. Oxford: Blackwell Publishing Company, 2004. 233
[36]  4 Hou X G, Siveter D J, Aldridge R J, et al. Collective behavior in an Early Cambrian arthropod. Science, 2008, 322: 224
[37]  5 Hu S X, Steiner M, Zhu M Y, et al. Diverse pelagic predators from the Chengjiang Lagerst?tte and the establishment of modern-style pelagic ecosystems in the Early Cambrian. Palaeogeogr Palaeoclimat Palaeoecol, 2007, 254: 307—316
[38]  6 Shu D G. Cambrian explosion: Birth of tree of animals. Gondwana Res, 2008, 14: 219—240
[39]  7 张文堂, 侯先光. Naraoia在亚洲大陆的发现. 古生物学报, 1985, 24: 591—595
[40]  8 Zhu M Y, LI G X, Zhang J M, et al. Early Cambrian stratigrapgy of East Yunnan, Southwestern China: A synthesis. Acta Palaeontol Sin, 2001, 40(Suppl): 4—39
[41]  9 Hu S X. Taphonomy and palaeoecology of the Early Cambrian Chengjiang biota from eastern Yunnan, China. Berl Pal?obiolog Abhand, 2005, 7: 1—197
[42]  10 Zhang X L, Shu D, Han J, et al. New sites of Chengjiang fossils: Crucial windows on the Cambrian explosion. J Geol Soc, 2001, 158: 211—218
[43]  11 Zhu M Y, Zhang J M, Li G X. Sedimentary environments of the Early Cambrian Chengjiang biota: Sedimentology of the Yu’anshan Formation in Chengjiang County, Eastern Yunnan. Acta Palaeontol Sin, 2001, 40(Suppl): 80—105
[44]  12 Zhao F C, Caron J B, Hu S X, et al. Quantitative analysis of Taphofacies and Paleocommunities in the early Cambrian Chengjiang Lagerst?tte. Palaios, 2009, 24: 826—839
[45]  13 Zhao F C, Hu S X, Caron J B, et al. Spatial variation in species diversity and composition of the early Cambrian Maotianshan Shale Biota: Taphonomic versus Ecological controls. In: Abstracts of the International Conference on the Cambrian Explosion. 2009, http://www. burgess-shale.info/abstract/f-zhao
[46]  14 罗惠麟, 蒋志文, 武希彻, 等. 云南东部震旦系-寒武系界线. 昆明: 云南人民出版社, 1982. 265
[47]  15 Erdtmann B D, Steiner M. Special observation concerning the Sinian-Cambrian transition and its stratigraphic implications on the central
[48]  and SW Yangtze Plateform, China. Palaeoworld, 2001, 13: 52—65
[49]  16 Jin Y G, Wang H Y, Wang W. Palaeoecological aspect of branchiopods from Chiungchussu Formation of Early Cambrian age, Eastern Yunan, China. Palaeoecol China, 1991, 1: 25—47
[50]  17 蒲心纯, 周浩达, 王熙林, 等. 中国南方寒武纪岩相古地理与成矿作用. 北京: 地质出版社, 1992. 191
[51]  18 孙枢, 范德廉, 陈海泓, 等. 中国地台区张裂盆地沉积. 沉积学报, 1987, 5: 6—18
[52]  19 孙枢, 陈海泓. 滇东下寒武统的风暴沉积. 见: 中国石油学会石油地质委员会, 编. 碎屑岩沉积相研究. 北京: 石油工业出版社, 1988. 357—363
[53]  20 Conway M S. The community structure of the Middle Cambrian phyllopod bed (Burgess shale). Palaeontology, 1986, 29: 423—467
[54]  21 Caron J B, Jackson D A. Paleoecology of the greater phyllopod bed community, Burgess shale. Palaeogeogr Palaeoclimat Palaeoecol, 2008, 258: 222—256
[55]  22 Shu D G, Conway Morris S, Han J, et al. Primitive deuterostomes from the Chengjiang Lagerst?tte (Lower Cambrian, China). Nature, 2001, 414: 419—424
[56]  23 Shu D G, Conway M S, Han J, et al. Ancestral echonoderms from the Chengjiang deposits of China. Nature, 2004, 430: 422—427
[57]  24 Shu D G, Luo H L, Conway M S, et al. Lower Cambrian vertebrates from south China. Nature, 1999, 402: 42—46
[58]  25 舒德干. 脊椎动物实证起源. 科学通报, 2003, 48: 541—550

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133