全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高斯滤波在处理GRACE数据中的模拟研究:西藏拉萨的重力变化率

, PP. 1327-1333

Keywords: 重力变化,GRACE,高斯滤波,青藏高原,拉萨

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文利用重力卫星GRACE数据计算了青藏高原的空间重力分布,以及用不同高斯滤波半径得到的拉萨重力变化率.结果显示重力变化率的估算依赖于高斯滤波器空间半径的大小.由GRACE得到的重力变化速率同地表面绝对重力测量得到的值吻合很好,即当滤波器空间半径趋近0时,GRACE估算的重力变化率趋于地表面测量值.接下来对于地面信号应用不同高斯滤波器空间半径进行了数值模拟计算.结果显示一个物理信号的估算依赖于滤波半径,如果计算区域等于或小于质量分布区域,尤其是均匀分布的质量,不管使用什么样的滤波半径,都给出一个相当准确的结果.如果计算区域大于质量分布区域,由于截断引起的信号泄漏,计算会有很大的误差.如果质量异常很小,除非滤波半径十分小,否则很难从空间观测辨别它.如果计算区域在质量分布区域之外,计算结果几乎为0,尤其对较小的滤波半径.高斯滤波器的这些性质在应用GRACE数据中具有重要意义.我们进一步讨论了引起拉萨重力变化的物质来源,表明拉萨重力变化率不是由当前冰川融化(PDIM)(或者小冰期,LIA)效应引起的,因为在拉萨及其周边没有冰川融化发生.重力变化率主要归因于与印度板块碰撞有关的构造变形,而发生的地表位移、地表剥蚀和GIA作用是不容忽视的.

References

[1]  1 Tapponnier P, Xu Z, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001, 294: 1671-1677??
[2]  2 Wang Q, Zhang P, Freymueller J T, et al. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 2001, 294: 574-577??
[3]  3 Chen W P, Yang Z. Earthquakes beneath the Himalayas and Tibet: Evidence for strong lithospheric mantle. Science, 2004, 304: 1949-1952??
[4]  4 Sun W, Wang Q, Li H, et al. Gravity and GPS measurements reveal mass loss beneath the Tibetan Plateau: Geodetic evidence of increasing crustal thickness. Geophys Res Lett, 2009, 36: L02303, doi: 10.1029/2008GL036512 ??
[5]  5 Tapley B D, Bettadpur S, Watkins M, et al. The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett, 2004, 31: L09607, doi: 10.1029/2004GL019920??
[6]  6 Tapley B D, Bettadpur S, Ries J, et al. GRACE measurements of mass variability in the Earth system. Science, 2004, 305: 503-505??
[7]  7 Wahr J, Swenson S, Zlotnicki V, et al. Time-variable gravity from GRACE: First results. Geophys Res Lett, 2004, 31: L11501, doi: 10.1029/2004GL019779??
[8]  8 Chen J L, Rodell M, Wilson C R, et al. Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophys Res Lett, 2005, 32: L14405, doi: 10.1029/2005GL022964??
[9]  9 Velicogna I, Wahr J. Measurements of time-variable gravity show mass loss in Antarctica. Science, 2006, 311: 1754-1756 ??
[10]  10 Chen J L, Wilson C R, Tapley B D. Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science, 2006, 313: 1958-1960??
[11]  11 Tamisiea M E, Leuliette E W, Davis J L, et al. Constraining hydrological and cryospheric mass flux in southeastern Alaska using space-based gravity measurements. Geophys Res Lett, 2005, 32: L20501, doi: 10.1029/2005GL023961 ??
[12]  12 Han S C, Shum C K, Bevis M, et al. Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science, 2006, 313: 658-666??
[13]  13 Jekeli C. Alternative Methods to Smooth the Earth’s Gravity Field, Department of Geodetic Science and Surveying, Ohio State University, Columbus, OH. 1981
[14]  14 Wahr J, Molenaar M, Bryan F. Time-variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res, 1998, 103: 30205-30230??
[15]  15 Heiskanen W A, Moritz H. Physical Geodesy. San Francisco: Freemen, 1967??
[16]  16 Westaway R. Crustal volume balance during the India-Eurasia collision and altitude of the Tibetan Plateau: A working hypothesis. J Geophys Res, 1995, 100: 15173-15192??
[17]  17 Métivier F, Gaudemer Y, Tapponnier P, et al. Mass accumulation rates in Asia during the Cenozoic. Geophys J Int, 1999, 137: 280-318
[18]  18 Ivins E R, James T S. Bedrock response to Llanquihue Holocene and present-day glaciation in southernmost South America. Geophys Res Lett, 2004, 31: L24613, doi: 10.1029/2004GL021500??
[19]  19 Sun W, Miura S, Sato T, et al. Gravity measurements in southeastern Alaska reveal negative gravity rate of change caused by Glacial Isostatic Adjustment. J Geophys Res, 2010, 115: B12406, doi: 10.1029/2009JB007194 ??
[20]  20 Sato T, Larsen C, Miura M, et al. Reevaluation of the viscoelastic and elastic responses to the past and present-day ice changes in Southeast Alaska. Tectonophysics, 2010, doi: 10.1016/j.tecto.2010.05.009
[21]  21 Wang H. Effects of glacial isostatic adjustment since the late Pleistocene on the uplift of the Tibetan Plateau. Geophys J Int, 2001, 144: 448-458??
[22]  22 Kaufmann G. Geodetic signatures of a Late Pleistocene Tibetan ice sheet. J Geodyn, 2005, 39: 111-125??
[23]  23 Kuhle M, Herterich K, Calov R. On the ice age glaciations of the Tibetan Highlands and its transformation into a 3D model. GeoJournal, 1989, 19: 201-206
[24]  24 Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola Basin, central Tibet. Nature, 2006, 439: 677-681??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133