2 Ammon C J, Chen J, Thio H, et al. Rupture process of the 2004 Sumatra-Andaman earthquake. Science, 2005, 308: 1133-1139??
[3]
3 Tsai V C, Nettles M, Ekstr?m G, et al. Multiple CMT source analysis of the 2004 Sumatra earthquake. Geophys Res Lett, 2005, 32: L17304, doi: 10.1029/2005GL023813??
[4]
4 Han S C, Shum C K, Bevis M, et al. Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science, 2006, 313: 658-666??
[5]
5 Hoechner A, Babeyko A Y, Sobolev S V. Enhanced GPS inversion technique applied to the 2004 Sumatra earthquake and tsunami. Geophys Res Lett, 2008, 35: L08310, doi: 10.1029/2007GL033133??
[6]
6 Ogawa R, Heki K. GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake. Geophys Res Lett, 2007, 34: L06313, doi: 10.1029/2007GL029340??
[7]
7 Chen J L, Wilson C R, Tapley B D, et al. GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake. Geophys Res Lett, 2007, 34: L13302, doi: 10.1029/2007GL030356??
[8]
8 Panet I, Mikhailov V, Diament M, et al. Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity. Geophys J Int, 2007, 171: 177-190??
[9]
9 Sun W, Okubo S. Co-seismic deformations detectable by satellite gravitymissions—A case study of Alaska (1964, 2002) and Hokkaido (2003) earthquakes in the spectral domain. J Geophys Res, 2004, 109: B04405, doi: 10.1029/2003JB002554
[10]
10 Pollitz F F, Bürgmann R, Banerjee P. Postseismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth. Geophys J Int, 2006, 167: 397-420??
[11]
11 Pollitz F F, Banerjee P, Grijalva K, et al. Effect of 3-D viscoelastic structure on post-seismic relaxation from the 2004 M=9.2 Sumatra earthquake. Geophys J Int, 2008, 173: 189-204
[12]
12 de Linage C, Rivera L, Hinderer J, et al. Separation of coseismic and postseismic gravity changes for the 2004 Sumatra-Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation. Geophys J Int, 2009, 176: 695-714
[13]
13 Scholz C H, Molnar P, Johnson T. Detailed studies of the frictional sliding of granite and implications for the earthquake mechanisms. J Geophys Res, 1972, 77: 6392-6406??
[14]
14 Sheu S Y, Shieh C F. Viscoelastic-afterslip concurrence: A possible mechanism in the early post-seismic deformation of the Mw7.6, Chi-Chi (Taiwan) earthquake. Geophys J Int, 2004, 159: 1112-1124
[15]
15 Deng J, Gurnis M, Kanamori H, et al. Viscoelastic low in the lower crust after the 1992 Landers, California, earthquake. Science, 1998, 282: 1689-1692??
[16]
16 árnadóttir T, Jónsson S, Pollitz F F, et al. Postseismic deformation following the June 2000 earthquake sequence in the south Iceland seismic zone. J Geophys Res, 2005, 110: B12308, doi: 10.1029/2005JB003701
[17]
17 Melosh H, Raefsky A. The dynamic origin of subduction zone topography. Geophys J R Astr Soc, 1980, 60: 8441-8451
[18]
18 Lorenzo M F, Roth F, Wang R. Inversion for rheological parameters from post-seismic surface deformation associated with the 1960 Valdivia earthquake, Chile. Geophys J Int, 2006, 164: 75-87??
[19]
19 Jonsson S, Segall P, Pedersen R, et al. Post-earthquake ground movements correlated to pore-pressure transients. Nature, 2003, 424: 179-183??
[20]
20 Masterlark T, Wang H F. Transient Stress-Coupling Between the 1992 Landers and 1999 Hector Mine, California, Earthquakes. Bull Seism Soc Am, 2003, 92: 1470-1486
[21]
21 Wahr J, Molenaar M, Bryan F. Time-variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res, 1998, 103: 30205-30230??
[22]
22 Wahr J, Swenson S, Zlotnicki V, et al. Time-variable gravity from GRACE: first results. Geophys Res Lett, 2004, 31: L11501, doi: 10.1029/2004GL019779??
[23]
23 Chen J L, Wilson C R, Famiglietti J S, et al. Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. J Geophys Res, 2005, 110: B08408, doi: 10.1029/2004JB003536??
[24]
24 Fantino E, Casotto S. Methods of harmonic synthesis for global geopotential models and their first-, second-, and third-order gradients. J Geod, 2009, 83: 595-619??
[25]
25 Franz B. Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models. Technical Report. Deutsches GeoForschungsZentrum GFZ, 2009
[26]
26 Lyard F, Lefevre F, Letellier T, et al. Modelling the global ocean tides: Insights from FES2004. Ocean Dyn, 2006, 56: 394-415??
[27]
27 McCarthy D D, Petit G. IERS Conventions (2003). IERS Technical Note No. 32, Bundesamts für Kartogr und Geod, Frankfurt, Germany. 2003
[28]
28 Desai S D. Observing the pole tide with satellite altimetry. J Geophys Res, 2002, 107: 3186, doi: 10.1029/2001JC001224??
[29]
29 Bettadpur S. Gravity Recovery and Climate Experiment Level-2 gravity field product user handbook. Center for Space Research, Austin, Texas, 2007. Rep. GRACE 327-734
[30]
30 Bettadpur S. CSR Level-2 processing standards document for product release 04. Center for Space Research, Austin, Texas, 2007. Rep. GRACE 327-742
[31]
31 Jekeli C. Alternative methods to smooth the Earth’s gravity field. Technical Report. Department of Geodetic Science and Surveying, Ohio State University. 1981
[32]
32 Han S C, Shum C K, Jekeli C, et al. Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys J Int, 2005, 163: 18-25??
[33]
33 Chen J L, Wilson C R, Seo K W. Optimized smoothing of Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. J Geophys Res, 2006, 111: B06408, doi: 10.1029/2005JB004064??
[34]
34 Swenson S, Wahr J. Post-processing removal of correlated errors in GRACE data. Geophys Res Lett, 2006, 33: L08402, doi: 10.1029/2005GL025285??
[35]
35 Sasgen I, Martinec Z, Fleming K. Wiener optimal filtering of GRACE data. Stud Geophys Geod, 2006, 50: 499-508??
[36]
36 Zhang Z Z, Chao B F, Lu Y, et al. An effective filtering for GRACE time-variable gravity: Fan filter. Geophys Res Lett, 2009, 36: L17311, doi: 10.1029/2009GL039459??
[37]
37 Chen J L, Wilson C R, Famiglietti J S, et al. Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. J Geophys Res, 2005, 110: B08408, doi: 10.1029/2004JB003536??
[38]
38 Wang R, Lorenzo-Martin F, Roth F. PSGRN/PSCMP—A new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput Geosci, 2006, 32: 527-541??
[39]
39 Kennett B L N, Engdahl E R. Traveltimes for global earthquake location and phase identification. Geophys J Int, 1991, 105: 429-465??
[40]
40 Sun W, Okubo S, Fu G, et al. General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric Earth model—Applicable to deformed Earth surface and space-fixed point. Geophys J Int, 2009, 177: 817-833??
[41]
41 Banerjee P, Pollitz F, Nagarajan B, et al. Coseismic slip distributions of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes from GPS static offsets. Bull Seism Soc Am, 2007, 97: S86-S102??
[42]
42 Hirth G, Kohlstedt D L. Rheology of the Upper Mantle and the Mantle Wedge: A view from the Experimentalists. In: Eiler J, ed. Inside the Subduction Factory. AGU Monograph, 2003, 138: 83-105
45 Tanaka Y, Klemann V, Fleming K, et al. Spectral finite element approach to postseismic deformation in a viscoelastic self-gravitating spherical Earth. Geophys J Int, 2009, 176: 715-739??
[46]
46 Cannelli V, Melini D, Piersanti A, et al. Postseismic signature of the 2004 Sumatra earthquake on low-degree gravity harmonics. J Geophys Res, 2008, 113: B12414, doi: 10.1029/2007JB005296??
[47]
47 Cadek O, Fleitout L. Effect of lateral viscosity variations in the top 300 km on the geoid and dynamic topography. Geophys J Int, 2003, 152: 566-580??
[48]
48 Gaherty J, Jordan T, Gee L. Seismic structure of the upper mantle in a central Pacific corridor. J Geophys Res, 1996, 101: 22291-22309??
50 Ryder I, Parsons B, Wright T J, et al. Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modeling. Geophys J Int, 2007, 169: 1009-1027??
[51]
51 Shen Z K, Zeng Y, Wang M, et al. Postseismic deformation modeling of the 2001 Kokoxili earthquake, western China. Geophys Res Abs, 2003, 5: 07840