全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

企鹅珍珠贝珍珠层螺旋位错生长

, PP. 865-872

Keywords: 企鹅珍珠贝,珍珠层,有机质薄膜,文石微板片,螺旋位错

Full-Text   Cite this paper   Add to My Lib

Abstract:

?基于近海各种环境因子的响应,产自中国海南岛沿岸海域的企鹅珍珠贝珍珠层表层发育一组‘螺旋位错’微结构.透射和扫描电子显微镜测试结果表明,由企鹅珍珠贝外套膜上皮细胞组织周期性分泌的有机质多以薄膜的形式预先构筑初始螺旋位错生长模板,在有机质薄膜的诱导和螺旋调制下,无定形碳酸钙质点通过择位取向和螺旋位错生长,逐步演变为具长程有序的假六方文石微板片,与其外延螺旋生长的细分散状有机质一并兼有择优识别和粘附无定形碳酸钙质点的功能.无数微米-纳米尺度的文石微板片参与有机质薄膜的集群互动和螺旋位错自组装,并沿c轴方向呈蜷线状逐层向前堆垛,形成具螺旋位错生长结构的珍珠层.

References

[1]  1 宋振亚, 乔方利, 雷晓燕, 等. 大气-海浪-海洋环流耦合数值模式的建立及北太平洋SST模拟. 水动力学研究与进展, 2007, 22: 543-548
[2]  2 王桂华, 苏纪兰, 齐义泉. 南海中尺度涡研究进展. 地球科学进展, 2005, 20: 882-886
[3]  3 Qiao L, Feng Q L, Lu S S. In vitro growth of nacre-like tablet forming: From amorphous calcium carbonate, nanostacks to hexagonal tablets. Crystal Growth Design, 2008, 8: 1509-1514??
[4]  4 Ren F Z, Wan X D, Ma Z H. Study on microstructure and thermodynamics of nacre in mussel shell. Material Chem Phys, 2009, 114: 367-370??
[5]  5 Sumitomo T, Hideki K, Yusuke O, et al. Deformation mechanisms of natural nano-laminar composites: Direct TEM observation of organic matrix in nacre. Ceram Eng Sci Proc, 2008, 28: 15-22
[6]  6 Barthelat F, Espinosa H D. An Experimental Investigation of Deformation and Fracture of Nacre-Mother of Pearl. Exp Mech, 2007, 47: 311-324??
[7]  7 Giudici G D, Podda F, Sanna R, et al. Structural properties of biologically controlled hydrozincite: An HRTEM and NMR spectroscopic study. Am Mineral, 2009, 94: 1698-1706??
[8]  8 Marthe R, Evelyne L. Multiscale structure of sheet nacre. Biomaterials, 2005, 26: 6254-6262??
[9]  9 张刚生, 谢先德, 王德强, 等. 我国主要育珠贝(蚌)贝壳珍珠层的扫描电子显微镜研究. 热带海洋学报, 2003, 22: 55-61
[10]  10 张恩, 彭明生, 梁超伦, 等. 珍珠显微结构及纳米矿物的电镜分析. 矿物学报, 2008, 28: 112-116
[11]  11 谢雷, 王小祥, 郦剑. 三角帆蚌珍珠质层结构和珍珠质涂层的研究. 无机材料学报, 2008, 23: 617-620
[12]  12 张学骜, 吴文健, 王建方. 贝壳珍珠层中文石晶体择优取向动态分析. 科学通报, 2007, 52: 2089-2092
[13]  13 Yao N, Alexander E, Austin A. Crystal growth via spiral motion in abalone shell nacre. J Material Res, 2006, 21: 1936-1946
[14]  14 Julyan H E, Cartwright J H, Checa A G. The dynamics of nacre self-assembly. J Royal Soc Interface, 2007, 4: 491-504??
[15]  15 Ma Z J, Huang J, Sun J, et al. A novel extrapallial fluid protein controls the morphology of nacre lamellae in the pearl oyster, Pinctada fucata. J Biol Chem, 2007, 282: 23253-23263??
[16]  16 Yao N, Alexander K E, Wendy W L, et al. Organic-inorganic interfaces and spiral growth in nacre. J Royal Soc Interface, 2009, 6: 367-376
[17]  17 Yannicke D, Alexander D B, Marine C, et al. Structure and composition of the nacre-prisms transition in the shell of Pinctada margaritifera (Mollusca, Bivalvia). Analy Bioanaly Chem, 2008, 390: 1659-1669??
[18]  18 Barthelat F, Espinosa H D. An experimental investigation of deformation and fracture of nacre-mother of pearl. Exp Mech, 2007, 47: 311-324??
[19]  19 蔡安华, 刘睿, 潘海华, 等. 生物矿化中的无定形碳酸钙. 化学进展, 2008, 20: 54-59
[20]  20 Pina C M, Becker U, et al. Molecular-scale mechanisms of crystal growth in Barite. Nature, 1998, 395: 483-486??
[21]  21 An X Q, Cao C B. Coeffect of silk fibroin and self-assembly monolayers on the biomineralization of calcium carbonate. J Phys Chem, 2008, 112: 15844-15849
[22]  22 Sudo S, Fujikawa T, Nagakura T, et al. Structures of mollusc shell framwork proteins. Nature, 1997, 387: 563-564
[23]  23 Mann S. Molecular recognition in biomineralization. Nature, 1988, 332: 119-124??
[24]  24 Weiner S, Traub W. Macromolecules in mollusk shells and their function in biominerallization. Philos Trans Royal Soc B, 1984, 304: 425-434??
[25]  25 Marthe R, Anders M, Marc G, et al. Dynamics of sheet nacre formation in bivalves. J Struct Biol, 2009, 165: 190-195??
[26]  26 Burton W K, Cabrera N, Frank F C. Role of dislocations in crystal growth. Nature, 1949, 163: 398-399??
[27]  27 Burton W K, Cabrera N, Frank F C. The growth of crystals and the equilibrium structure of their surfaces. Phil Trans R Soc London, 1951, 243: 299-358??
[28]  28 郑燕青, 施尔畏, 李汶军. 晶体生长理论研究现状与发展. 无机材料学报, 1999, 14: 321-332
[29]  29 Watson G W, Oliver P M, Parker S C. Atomistic simulation of crystal growth at the a (100) screw dislocation terminating at the {100} surface of MgO. Surface Sci, 2001, 474: 185-190??
[30]  30 Nakahara H. An electron microscope study of the growing surface of nacre in two gastropod spiecies Turbo cornutus and Tegula pfeifferi. Venus, 1979, 38: 205-211
[31]  31 Nakahara H, Kakei M, Bevelander G. Electron microscopic and amino acid studies on the outer and inner shell layers of Haliotis rufescens. Venus, 1982, 41: 33-46
[32]  32 Weiner S, Traub W. Macromolecules in mollusk shells and their function in biominerallization. Philos Trans Royal Soc, 1984, 304: 425-434??
[33]  33 Schaffer T E, Zanetti C I, Proksch R, et al. Does abalone nacre formed by hetereoepitaxial nucleation or by growth through mineral bridge? Chem Material, 1997, 9: 1731-1740
[34]  34 Katharina G, Roland K, Christian K, et al. Correlation of the orientation of stacked aragonite platelets in nacre and their connection via mineral bridges. Ultramicroscopy, 2009, 109: 230-236??
[35]  35 Marthe R, Evelyne L, Philippe S, et al. Multiscale structure of sheet nacre. Biomaterials, 2005, 26: 6254-6262??
[36]  36 Addadi L, Weiner S A. Pavementof pearl. Nature, 1997, 389: 912-915??
[37]  37 Falini G, Albeck S,Weiner S, et al. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science, 1996, 271: 67-69??
[38]  38 Nudelman F, Shimoni E, Klein E, et al. Forming nacreous layer of the shells of the bivalves Atrina rigida and Pinctada margaritifera: An environmental- and cryo-scanning electron microscopy study. J Struct Biol, 2008, 162: 290-300??
[39]  39 An X Q, Cao C B. Coeffect of silk fibroin and self-assembly monolayers on the biominera- lization of calcium carbonate. J Phys Chem, 2008, 112: 15844-15849
[40]  40 Furuhashi T, Miksik I, Smrz M, et al. Comparison of aragonitic molluscan shell proteins. Comp Biochem Physiol B-Biochem Mol Biol, 2010, 155: 195-200??
[41]  41 Miyamoto H, Miyashita T, Okushima M, et al. A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci USA, 1996, 93: 9657-9660??
[42]  42 Sudo S, Fujikawa T, Nagakura T, et al. Structures of mollusc shell framwork proteins. Nature, 1997, 387: 563-564
[43]  43 张勇, 肖锐, 凌立, 等. 珍珠质水溶性基质蛋白的分离纯化及其对碳酸钙结晶的影响. 海洋科学, 2004, 28: 33-37
[44]  44 Ma Z J, Huang J, Wang G N, et al. A novel extrapallial fluid protein controls the morphology of nacre lamellae in the pearl oyster, Pinctada fucata. J Biol Chem, 2007, 282: 23253-23263??
[45]  45 Berman A, Addadi L, Weiner S. Interaction of sea-urchin skeleton macromolecules with growing crystals study of intracrystalline proteins. Nature, 1988, 311: 546-548
[46]  46 Marthe R, Anders M, Marc G, et al. Dynamics of sheet nacre formation in bivalves. J Struct Biol, 2009,165: 190-195??
[47]  47 Nils K. The Molecular basis of nacre formation. Science, 2009, 325: 1351-1352??
[48]  48 Weiner S, Mahamid J, Politi Y, et al. Overview of amorphous precursor phase strategy in biomineralization. Front Material Sci China, 2009, 3: 104-109??
[49]  49 Sheng X X, Ward M D, Wesson J A. Adhesion between molecules and calcium oxalate crystals critical interaction in kidney stone formation. J Am Chem Soc, 2003, 125: 2854-2855??
[50]  50 宋振亚, 乔方利, 雷晓燕, 等. 大气-海浪-海洋环流耦合数值模式的建立及北太平洋SST模拟. 水动力学研究与进展, 2007, 22: 543-548
[51]  51 孙璐, 王东晓, 胡建宇. 南海北部海洋对局地生成热带气旋的响应. 热带海洋学报, 2008, 27: 11-15
[52]  52 王桂华, 苏纪兰, 齐义泉. 南海中尺度涡研究进展. 地球科学进展, 2005, 20: 882-886

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133