1 Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific: Their geological significance as indication of ocean ridge activity. Sediment Geol, 1986, 47: 125-148??
[2]
2 Murchey B L, Jones D L. A mid-Permian chert event: Widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins. Palaeogeogr Palaeoclimatol Palaeoecol, 1992, 96: 161-174??
[3]
3 Zhou Y Z, Chown E H, Guha J, et al. Hydrothermal origin of Precambrian bedded chert at Gusui, Guangdong, China: Petrologic and geochemical evidence. Sedimentology, 1994, 41: 605-619??
[4]
4 Shimizu H, Kunimaru T, Shigekaza, et al. Sources and depositional environments of some Permian and Triassic cherts: Significance of Rb-Sr and Sm-Nd isotopic and REE abundance data. J Geol, 2001, 109: 105-125??
[5]
5 Kametaka M, Takebe M, Nagai H, et al. Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze platform, China; the Gufeng Formation: A continental shelf radiolarian chert. Sediment Geol, 2005, 174: 197-222??
[6]
6 Maliva R G, Knoll A H, Simonson B M. Secular change in the Precambrian silica cycle: Insights from chert petrology. Geol Soc Am Bull, 2005, 117: 835-845??
[7]
8 van den Boorn S H, van Bergen M J, Nijman W, et al. Dual role of seawater and hydrothermal fluids in Early Archean chert formation: Evidence from silicon isotopes. Geology, 2007, 35: 939-942??
[8]
9 Chen D Z, Wang J G, Qing H R, et al. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints. Chem Geol, 2009, 258: 168-181??
[9]
10 Thurston D R. Studies on bedded cherts. Contrib Mineral Petrol, 1972, 36: 329-334??
[10]
11 Moore Jr T C. Chert in the Pacific: Biogenic silica and hydrothermal circulation. Palaeogeogr Palaeoclimatol Palaeoecol, 2008, 261: 87-99??
[11]
12 Yamamoto K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto terranes. Sediment Geol, 1987, 52: 65-108??
25 金玉玕, 沈树忠, Henderson C M, 等. 瓜德鲁普统(Guadalupian)-乐平统(Lopingian)全球界线层型剖面和点(GSSP). 地层学杂志, 2007, 31: 1-13
[25]
26 Jin Y G, Shen S Z, Henderson C M, et al. The Global Stratotype Section and Point (GSSP) for the boundary between the Capitanian and Wuchiapingian Stage (Permian). Episodes, 2006, 29: 253-262
[26]
27 Mei S L, Jin Y G, Wardlaw B R. Conodont succession of the Guadalupian-Lopingian boundary strata in Laibin of Guangxi, China and West Texas, USA. Palaeoworld, 1998, 9: 53-76
30 Shen S Z, Wang Y, Henderson C M. Biostratigraphy and lithofacies of the Permian System in the Laibin-Heshan area of Guangxi, South China. Palaeoworld, 2007, 16: 120-139??
[30]
31 Wignall P B, Védrine S, Bond D P G, et al. Facies analysis and sea-level change at the Guadalupian-Lopingian Global Stratotype (Laibin, South China), and its bearing on the end-Guadalupian mass extinction. J Geol Soc London, 2009, 166: 655-666??
33 Wang W, Cao C, Wang W. The carbon isotope excursion on GSSP candidate section of Lopingian-Guadalupian boundary. Earth Planet Sci Lett, 2004, 220: 57-67??
[33]
34 Kaiho K, Chen Z Q, Ohashi T, et al. A negative carbon isotope anomaly associated with the earliest Lopingian (Late Permian) mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 223: 172-180??
7 Chen D Z, Qing H, Yan X, et al. Hydrothermal venting and basin evolution (Devonian, South China): Constraints from rare earth element geochemistry of chert. Sediment Geol, 2006, 183: 203-216??
40 Liu J M, Ye J, Ying H L, et al. Sediment-hosted micro-disseminated gold mineralization constrained by basin paleo-topographic highs in the Youjiang basin, South China. J Asian Earth Sci, 2002, 20: 517-533??
[41]
41 Chung S L, Jahn B M. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology, 1995, 23: 889-892??
[42]
42 Xu Y, Chung S L, Jahn B, et al. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos, 2001, 58: 145-168??
[43]
43 He B, Xu Y G, Chung S L, et al. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth Planet Sci Lett, 2003, 213: 391-405??
46 Fan W, Zhang C, Wang Y, et al. Geochronology and geochemistry of Permian basalts in western Guangxi Province, Southwest China: Evidence for plume-lithosphere interaction. Lithos, 2008, 102: 218-236??
[47]
47 Sholkovitz R E. Rare earth elements of the North Atlantic Ocean, Amazon Delta, and East China Sea: Reinterpretation of terrigenous input patterns to the ocean. Am J Sci, 1988, 288: 236-281??
[48]
48 Taylor S R, McClennan S M. The Continental Crustal: Its Composition and Evolution. Oxford: Blackwell, 1985. 1-312
[49]
49 Wang Y J, Yang Q, Cheng Y N, et al. Lopingian (Upper Permian) radiolarian biostratigraphy of South China. Palaeoworld, 2006, 15: 31-53??
[50]
50 Shang Q, Caridroit M, Wang Y. Radiolarians from the uppermost Permian Changshing of southern Guangxi. Acta Micropalaeont Sin, 2001, 18: 229-240
[51]
51 Geeslin J H, Chafetz H S. Ordovician Aleman ribbon cherts: An example of silicification prior to carbonate lithification. J Sediment Petrol, 1982, 52: 1283-1293
[52]
52 Bruechner H K, Snyder W S, Boudreau M. Diagenetic controls on the structural evolution of siliceous sediments in the Golconda Allochthon, Nevada, U.S.A. J Struct Geol, 1987, 9: 403-417??
[53]
53 Murray R W, Buchholtz ten Brink M R, Gerlach D C, et al. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: Assessing the influence of chemical fractionation during diagenesis. Geochim Cosmochim Acta, 1992, 56: 2657-2671??
[54]
54 Murray R W, Jones D L, Buchholtz ten Brink M R. Diagenetic formation of bedded chert: Evidence from chemistry of the chert-shale couplet. Geology, 1992, 20: 271-274??
[55]
55 Murray R W. Chemical criteria to identify the depositional environment of chert: General principles and applications. Sediment Geol, 1994, 90: 213-232??
[56]
56 Murray R W, Buchholtz ten Brink M R, Jones D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 1990, 18: 268-271??
[57]
57 Murray R W, Buchholtz ten Brink M R, Gerlach D C, et al. Rare earth, major, and trace elements in chert from the Franciscan complex and Monterey group, Californian: Assessing REE sources to fine-grained marine sediments. Geochim Cosmochim Acta, 1991, 55: 1875-1895??
[58]
58 Bostr?m K, Peterson M N A. The origin of aluminum-poor ferromanganoan sediments in areas of high heat-flow on the East Pacific Rise. Mar Geol, 1969, 7: 427-447??
[59]
59 Beauchamp B, Boud A. Growth and demise of Permian biogenic chert along northwest Pangea: Evidence for end-Permian collapse of thermohaline circulation. Palaeogeogr Palaeoclimatol Palaeoecol, 2002, 184: 37-63??
[60]
60 Peng J, Yi H S, Xia W J. Geochemical indication of Sinian bedded siliceous rocks in the Hunan-Guizhou-Guangxi area and their environmental significance. Acta Geol Sin, 2000, 74: 46-53
[61]
61 Turekian K K, Wedepohl K H. Distribution of the elements in some major units of the earth’s crust. Bull Geol Soc Am, 1961, 72: 175-192??
[62]
62 Michard A. Rare earth element systematics in hydrothermal fluids. Geochim Cosmochim Acta, 1989, 53: 745-750??
[63]
63 German C R, Klinkhamaer G P, Edmond J M, et al. Hydrothermal scavenging of rare earth elements in the ocean. Nature, 1990, 345: 516-518??
[64]
64 Ruhlin D E, Owen R M. The rare earth element geochemistry of hydrothermal sediments from the East Pacific Rise: Examination of a seawater scavenging mechanism. Geochim Cosmochim Acta, 1986, 50: 393-400??
[65]
65 Olivarez A M, Owen R M. REE/Fe variations in hydrothermal sediments: Implication for REE content of seawater. Geochim Cosmochim Acta, 1989, 53: 757-762??
[66]
68 Zhou M F, Zhao J H, Qi L, et al. Zircon U-Pb geochronology and elemental and Sr-Nd isotope geochemistry of Permian mafic rocks in the Funing area, SW China. Contrib Mineral Petrol, 2006, 151: 1-19??
[67]
66 Chen Z Q, George A D, Yang W R. Effects of Middle-Late Permian sea-level changes and mass extinction on the formation of the Tieqiao skeletal mound in the Laibin area, South China. Aust J Earth Sci, 2009, 56: 745-763??