1 Kaiho K. Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deep-sea circulation. Palaeogeogr PalaeoclimatolPalaeoecol, 1992, 83: 65–85
[2]
2 Isozaki Y. Permian-Triassic boundary superanoxia and stratified superocean: Records from lost deep sea. Science, 1997, 276: 235–238??
[3]
3 Kaiho K, Kajiwara Y, Tazaki K, et al. Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: Theirdecrease, subsequent warming and recovery. Palaeoceanography, 1999, 14: 511–524??
[4]
4 Canfield D E. A new model for Proterozoic ocean chemistry. Nature, 1998, 396: 450–453??
[5]
5 Bratton J F, Berry W B N, Morrow J R. Anoxia pre-dates Frasnian-Famennian boundary mass extinction horizon in the Great Basin, USA.Palaeogeogr Palaeoclimatol Palaeoecol, 1999, 154: 275–292??
[6]
6 Xie S C, Pancost R D, Yin H F, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 2005,434: 494–497??
[7]
7 Turgeon S C, Brumsack H J. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian BoundaryEvent (Cretaceous) in the Umbria-Marche Basin of central Italy. Chem Geol, 2006, 234: 321–339??
[8]
8 Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: An overview. In: Tyson RV, Pearson T H, eds. Modern and AncientContinental Shelf Anoxia. Geol Soc Spec Publ, 1991, 58: 1–24??
[9]
9 Lyons T W, Werne J P, Hollander D J, et al. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxictransition in the Cariaco Basin, Venezuela. Chem Geol, 2003, 195: 131–157??
[10]
10 Sageman B B, Murphy A E, Werne J P, et al. A tale of shales: The relative roles of production, decomposition, and dilution in theaccumulation of organic-rich strata, Middle Upper Devonian, Appalachian Basin. Chem Geol, 2003, 195: 229–273??
[11]
11 Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA). Chem Geol,2004, 206: 373–391??
[12]
12 Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. ChemGeol, 2004, 206: 289–318
[13]
13 Algeo T J. Can marine anoxic events draw down the trace element inventory of seawater? Geology, 2004, 32: 1057–1060
[14]
14 Tribovillard N, Riboulleau A, Lyons T, et al. Enhanced trapping of molybdenum by sulfurized organic matter of marine origin as recordedby various Mesozoic formations. Chem Geol, 2004, 213: 385–401??
[15]
15 Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem Geol, 2006, 232:12–32??
[16]
16 Russell A D, Morford J L. The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, BritishColumbia. Mar Geol, 2001, 174: 341–354??
[17]
17 Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the UpperPennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A. Chem Geol, 1992, 99:65–82??
[18]
18 Jones B J, Manning A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones.Chem Geol, 1994 , 111: 111–129
[19]
19 Wignall P B. Black Shale. Oxford: Claredon Press, 1994. 1–127
[20]
20 Alberdi G M, Tocco R. Trace metals and organic geochemistry of the Machiques Member (Aptian-Albian) and La Luna Formation(Cenomanian-Campanian), Venezuela. Chem Geol, 1999, 160: 19–38??
22 Jiang S Y, Zhao H X, Chen Y Q, et al. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chem Geol, 2007, 244: 584–604??
[23]
23 Chang H J, Chu X L, Feng L J, et al. Terminal Ediacaran anoxia in deep-ocean: Trace element evidence from cherts in the LiuchapoFormation, South China. Sci China Ser D-Earth Sci, 2009, 52: 807–822??
[24]
24 Barling J, Arnold G L, Anbar A D. Natural mass-dependent variations in the isotopic composition of molybdenum. Earth Planet Sci Lett,2001, 193: 447–457??
[25]
25 Anbar A D, Knoll A H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 2002, 297: 1137–1142
[26]
26 Arnold G L, Anbar A D, Barling J, et al. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science, 2004,304: 87–90??
[27]
27 Siebert C, Nagler T F, von Blanckenburg F, et al. Molybdenum isotope records as a potential proxy for paleoceanography. Earth Planet SciLett, 2003, 211: 159–171??
[28]
28 Siebert C, McManus J, Bice A, et al. Molybdenum isotope signatures in continental margin marine sediments. Earth Planet Sci Lett, 2006,241: 723–733??
32 Erickson B E, Helz G R. Molybdenum (VI) speciation in sulfidic waters: Stability and lability of thiomolybdates. Geochim CosmochimActa, 2000, 64: 1149–1158??
[33]
33 Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments. Geochim Cosmochim Acta, 1999, 63: 1735–1750??
[34]
34 Anbar A D. Molybdenum stable isotopes: Observations, interpretations and directions. Rev Mineral Geochem, 2004, 55: 429–454??
[35]
35 Sun Y C. Graptolite-bearing strata of China. Bull Geol Soc China, 1931, 10: 291–299
[36]
36 Mu E, Li J, Ge M, et al. Paleogeographic maps of the Late Ordovician in the Central China region and their explanation. J Stratigr, 1981, 5:165–170
[37]
37 Chen X, Rong J. Concepts and analysis of mass extinction with the Late Ordovician events as an example. Hist Biol, 1991, 5: 107–121??
[38]
38 Chen X, Rowley D, Rong J, et al. Late Precambrian through Early Paleozoic stratigraphic and tectonic evolution of the Nanling Region,Hunan Province, South China. Int Geol Rev, 1997, 39: 469–478??
[39]
39 Chen X, Rong J, Li Y, et al. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Siluriantransition. Palaeogeogr Palaeoclimatol Palaeoecol, 2004, 204: 353–372??
[40]
40 Wang K, Charles J O, Moses A J, et al. The great latest Ordovician extinction on the South China Plate: Chemostratigraphic studies of theOrdovician-Silurian boundary interval on the Yangtze Platform. Palaeogeogr Palaeoclirnatol Palaeoecol, 1993, 104: 61–79??
42 Fan J X, Chen X. Preliminary report on the Late Ordovician graptolite extinction in the Yangtze region. Palaeogeogr PalaeoclimatolPalaeoecol, 2007, 245: 82–94??
[43]
43 Fan J X, Peng P A, Melchin M J. Carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary, Yichang, South China.Palaeogeogr Palaeoclimatol Palaeoecol, 2009, 276: 160–169??
47 Xie X N, Li H J, Xiong X, et al. Main controlling factors of organic matter richness in a Permian section of Guangyuan, Northeast Sichuan.J China Univ Geosci, 2008, 19: 507–517??
[46]
48 Chen X, Rong J Y, Fan J X, et al. The Global boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (theuppermost of the Ordovician System). Episodes, 2006, 29: 183–196
[47]
49 Ji Z S, Yao J X, Yukio I, et al. Conodont Biostratigraphy across the Permian-Triassic Boundary at Chaotian, in Northern Sichuan, China.Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 252: 39–55??
[48]
50 Siebert C, N?gler T F, Kramers J D. Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochem Geophys Geosyst, 2001, 2: 2000GC000124
[49]
51 Poulson R L, Siebert C, McManus J, et al. Authigenic molybdenum isotope signatures in marine sediments. Geology, 2006, 34: 617–620??
53 Piper D Z. Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks. Chem Geol, 1994, 117:95–114
[52]
54 Scheffler K, Buehmann D, Schwark L. Analysis of late Palaeozoic glacial to postglacial sedimentary successions in South Africa bygeochemical proxies—Response to climate evolution and sedimentary environment. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 240:184–203??
[53]
55 Wright J, Schrader H, Holser W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. GeochimCosmochim Acta, 1987, 51: 631–644??
[54]
56 Bellanca A, Masseti D, Neri R. Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetianregion, northern Italy): Assessing REE sensitivity to environmental changes. Chem Geol, 1997, 141: 141–152??
[55]
57 Glikson M. Trace elements in oil shales, their source and organic association with particular reference to Australian deposits. Chem Geol,1985, 53: 155–174??
[56]
58 Thomson J, Jarvis I, Green D R H, et al. Mobility and immobility of redox-sensitive elements in deep-sea turbidities during shallow burial.Geochim Cosmochim Acta, 1998, 62: 643–656??
[57]
59 Rudnicki M D, Elderfield H. A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26°N, Mid-AtlanticRidge. Geochim Cosmochim Acta, 1993, 57: 2939–2957
[58]
60 Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci, 1996,24: 191–224??
[59]
61 McManus J, William M B, Silke S, et al. Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential.Geochim Cosmochim Acta, 2006, 70: 4643–4662??
63 Zhou L, Zhang H Q, Wang J, et al. Assessment on redox conditions and organic burial of siliciferous sediments at the Latest PermianDalong Formation in Shangsi, Sichuan, South China. J China Univ Geosci, 2008, 19: 496–506??
65 Reitz A, Wille M, Nagler T F, et al. Atypical Mo isotopes signatures in eastern Mediterranean sediments. Chem Geol, 2007, 245: 1–8??
[64]
45 Yin H F, Zhang K X, Tong J N, et al. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 2001,24: 102–114
[65]
46 Yang Z Y, Yin H F, Wu S B, et al. Permian-Triassic boundary stratigraphy and Fauna of South China. Geological Memoirs, Series, 2, 6.Beijing: Geological Publishing House, 1987. 1–380