全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

判识缺氧事件的地球化学新标志—钼同位素

, PP. 309-319

Keywords: Mo同位素,氧化还原判别指标,黑色岩系,上扬子

Full-Text   Cite this paper   Add to My Lib

Abstract:

?V/(V+Ni),U自生(自生U),V/Cr,Ceanom和U/Th是传统的氧化还原判别指标,但是这些微量元素的富集不仅与氧化还原环境有关,有机质的类型、沉积速率以及后期成岩作用都有可能使得元素的赋存形式发生变化,使得这些指标对氧化还原的判别出现多解性.δ98Mo作为一个新的氧化还原条件判别指标,已经得到人们的广泛关注.本文对宜昌王家湾剖面晚奥陶世五峰组-早志留世龙马溪组和四川上寺剖面晚二叠世大隆组两套黑色岩系(硅泥质组合)的δ98Mo和微量元素进行系统测定,比较δ98Mo与传统氧化还原判别指标之间的相关性,初步结果表明,这两套黑色岩系的V/(V+Ni),U自生,V/Cr,Ceanom和U/Th等有较大变化范围,总体上处于缺氧的范围,与δ98Mo没有明显的相关性.U/Mo比值可以作为指示氧化还原条件变化的指示剂,也许与U和Mo在不同成岩阶段相对富集程度不同有关,这种规律在静水环境更加明显,表现为在滞留环境中(δ98Mo>1.5‰),U/Mo比值明显偏小,似乎与同期以硫酸盐还原作用带为主的滞留沉积环境有关,暗示在这种静水滞留的缺氧环境下,后期生物扰动的机会要少很多.而在δ98Mo在0~1.5‰范围内,U/Mo比值有较大的变化范围,不排除在相对常氧的情况下,生物扰动和水循环改变了孔隙水的氧化还原条件,导致元素的重新分配.

References

[1]  1 Kaiho K. Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deep-sea circulation. Palaeogeogr PalaeoclimatolPalaeoecol, 1992, 83: 65–85
[2]  2 Isozaki Y. Permian-Triassic boundary superanoxia and stratified superocean: Records from lost deep sea. Science, 1997, 276: 235–238??
[3]  3 Kaiho K, Kajiwara Y, Tazaki K, et al. Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: Theirdecrease, subsequent warming and recovery. Palaeoceanography, 1999, 14: 511–524??
[4]  4 Canfield D E. A new model for Proterozoic ocean chemistry. Nature, 1998, 396: 450–453??
[5]  5 Bratton J F, Berry W B N, Morrow J R. Anoxia pre-dates Frasnian-Famennian boundary mass extinction horizon in the Great Basin, USA.Palaeogeogr Palaeoclimatol Palaeoecol, 1999, 154: 275–292??
[6]  6 Xie S C, Pancost R D, Yin H F, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 2005,434: 494–497??
[7]  7 Turgeon S C, Brumsack H J. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian BoundaryEvent (Cretaceous) in the Umbria-Marche Basin of central Italy. Chem Geol, 2006, 234: 321–339??
[8]  8 Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: An overview. In: Tyson RV, Pearson T H, eds. Modern and AncientContinental Shelf Anoxia. Geol Soc Spec Publ, 1991, 58: 1–24??
[9]  9 Lyons T W, Werne J P, Hollander D J, et al. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxictransition in the Cariaco Basin, Venezuela. Chem Geol, 2003, 195: 131–157??
[10]  10 Sageman B B, Murphy A E, Werne J P, et al. A tale of shales: The relative roles of production, decomposition, and dilution in theaccumulation of organic-rich strata, Middle Upper Devonian, Appalachian Basin. Chem Geol, 2003, 195: 229–273??
[11]  11 Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA). Chem Geol,2004, 206: 373–391??
[12]  12 Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. ChemGeol, 2004, 206: 289–318
[13]  13 Algeo T J. Can marine anoxic events draw down the trace element inventory of seawater? Geology, 2004, 32: 1057–1060
[14]  14 Tribovillard N, Riboulleau A, Lyons T, et al. Enhanced trapping of molybdenum by sulfurized organic matter of marine origin as recordedby various Mesozoic formations. Chem Geol, 2004, 213: 385–401??
[15]  15 Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem Geol, 2006, 232:12–32??
[16]  16 Russell A D, Morford J L. The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, BritishColumbia. Mar Geol, 2001, 174: 341–354??
[17]  17 Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the UpperPennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A. Chem Geol, 1992, 99:65–82??
[18]  18 Jones B J, Manning A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones.Chem Geol, 1994 , 111: 111–129
[19]  19 Wignall P B. Black Shale. Oxford: Claredon Press, 1994. 1–127
[20]  20 Alberdi G M, Tocco R. Trace metals and organic geochemistry of the Machiques Member (Aptian-Albian) and La Luna Formation(Cenomanian-Campanian), Venezuela. Chem Geol, 1999, 160: 19–38??
[21]  21 腾格尔, 刘文汇, 徐永昌. 缺氧环境及地球化学判识标志的探讨—以鄂尔多斯盆地为例. 沉积学报, 2004, 22: 365–372
[22]  22 Jiang S Y, Zhao H X, Chen Y Q, et al. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chem Geol, 2007, 244: 584–604??
[23]  23 Chang H J, Chu X L, Feng L J, et al. Terminal Ediacaran anoxia in deep-ocean: Trace element evidence from cherts in the LiuchapoFormation, South China. Sci China Ser D-Earth Sci, 2009, 52: 807–822??
[24]  24 Barling J, Arnold G L, Anbar A D. Natural mass-dependent variations in the isotopic composition of molybdenum. Earth Planet Sci Lett,2001, 193: 447–457??
[25]  25 Anbar A D, Knoll A H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 2002, 297: 1137–1142
[26]  26 Arnold G L, Anbar A D, Barling J, et al. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science, 2004,304: 87–90??
[27]  27 Siebert C, Nagler T F, von Blanckenburg F, et al. Molybdenum isotope records as a potential proxy for paleoceanography. Earth Planet SciLett, 2003, 211: 159–171??
[28]  28 Siebert C, McManus J, Bice A, et al. Molybdenum isotope signatures in continental margin marine sediments. Earth Planet Sci Lett, 2006,241: 723–733??
[29]  29 蒋少涌, 凌洪飞, 赵葵东, 等. 华南寒武纪早期牛蹄塘组黑色岩系中Ni-Mo 金属硫化物矿层的Mo同位素组成讨论. 岩石矿物学杂志,2008, 27: 341–345
[30]  30 周炼, 高山, Hawkesworth C, 等. 扬子克拉通北缘显生宙碎屑沉积岩Mo 同位素初步研究及其地质意义. 科学通报, 2008, 53:2630–2637
[31]  31 温汉捷, 张羽旭, 樊海峰, 等. 华南下寒武统地层的Mo 同位素组成特征及其古海洋环境意义. 科学通报, 2010, 55: 176–181
[32]  32 Erickson B E, Helz G R. Molybdenum (VI) speciation in sulfidic waters: Stability and lability of thiomolybdates. Geochim CosmochimActa, 2000, 64: 1149–1158??
[33]  33 Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments. Geochim Cosmochim Acta, 1999, 63: 1735–1750??
[34]  34 Anbar A D. Molybdenum stable isotopes: Observations, interpretations and directions. Rev Mineral Geochem, 2004, 55: 429–454??
[35]  35 Sun Y C. Graptolite-bearing strata of China. Bull Geol Soc China, 1931, 10: 291–299
[36]  36 Mu E, Li J, Ge M, et al. Paleogeographic maps of the Late Ordovician in the Central China region and their explanation. J Stratigr, 1981, 5:165–170
[37]  37 Chen X, Rong J. Concepts and analysis of mass extinction with the Late Ordovician events as an example. Hist Biol, 1991, 5: 107–121??
[38]  38 Chen X, Rowley D, Rong J, et al. Late Precambrian through Early Paleozoic stratigraphic and tectonic evolution of the Nanling Region,Hunan Province, South China. Int Geol Rev, 1997, 39: 469–478??
[39]  39 Chen X, Rong J, Li Y, et al. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Siluriantransition. Palaeogeogr Palaeoclimatol Palaeoecol, 2004, 204: 353–372??
[40]  40 Wang K, Charles J O, Moses A J, et al. The great latest Ordovician extinction on the South China Plate: Chemostratigraphic studies of theOrdovician-Silurian boundary interval on the Yangtze Platform. Palaeogeogr Palaeoclirnatol Palaeoecol, 1993, 104: 61–79??
[41]  41 苏文博, 何龙清, 王永标, 等. 华南奥陶-志留系五峰组及龙马溪组底部斑脱岩与高分辨综合地层. 中国科学D 辑: 地球科学, 2002,32: 207–219
[42]  42 Fan J X, Chen X. Preliminary report on the Late Ordovician graptolite extinction in the Yangtze region. Palaeogeogr PalaeoclimatolPalaeoecol, 2007, 245: 82–94??
[43]  43 Fan J X, Peng P A, Melchin M J. Carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary, Yichang, South China.Palaeogeogr Palaeoclimatol Palaeoecol, 2009, 276: 160–169??
[44]  44 严德天, 陈代钊, 王清晨, 等. 扬子地区奥陶系-志留系界线附近地球化学研究. 中国科学D 辑: 地球科学, 2009, 39: 285–299
[45]  47 Xie X N, Li H J, Xiong X, et al. Main controlling factors of organic matter richness in a Permian section of Guangyuan, Northeast Sichuan.J China Univ Geosci, 2008, 19: 507–517??
[46]  48 Chen X, Rong J Y, Fan J X, et al. The Global boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (theuppermost of the Ordovician System). Episodes, 2006, 29: 183–196
[47]  49 Ji Z S, Yao J X, Yukio I, et al. Conodont Biostratigraphy across the Permian-Triassic Boundary at Chaotian, in Northern Sichuan, China.Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 252: 39–55??
[48]  50 Siebert C, N?gler T F, Kramers J D. Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochem Geophys Geosyst, 2001, 2: 2000GC000124
[49]  51 Poulson R L, Siebert C, McManus J, et al. Authigenic molybdenum isotope signatures in marine sediments. Geology, 2006, 34: 617–620??
[50]  52 李红敬, 解习农, 林正良, 等. 四川盆地广元地区大隆组有机质富集规律. 地质科技情报, 2009, 28: 89–103
[51]  53 Piper D Z. Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks. Chem Geol, 1994, 117:95–114
[52]  54 Scheffler K, Buehmann D, Schwark L. Analysis of late Palaeozoic glacial to postglacial sedimentary successions in South Africa bygeochemical proxies—Response to climate evolution and sedimentary environment. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 240:184–203??
[53]  55 Wright J, Schrader H, Holser W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. GeochimCosmochim Acta, 1987, 51: 631–644??
[54]  56 Bellanca A, Masseti D, Neri R. Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetianregion, northern Italy): Assessing REE sensitivity to environmental changes. Chem Geol, 1997, 141: 141–152??
[55]  57 Glikson M. Trace elements in oil shales, their source and organic association with particular reference to Australian deposits. Chem Geol,1985, 53: 155–174??
[56]  58 Thomson J, Jarvis I, Green D R H, et al. Mobility and immobility of redox-sensitive elements in deep-sea turbidities during shallow burial.Geochim Cosmochim Acta, 1998, 62: 643–656??
[57]  59 Rudnicki M D, Elderfield H. A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26°N, Mid-AtlanticRidge. Geochim Cosmochim Acta, 1993, 57: 2939–2957
[58]  60 Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci, 1996,24: 191–224??
[59]  61 McManus J, William M B, Silke S, et al. Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential.Geochim Cosmochim Acta, 2006, 70: 4643–4662??
[60]  62 周炼, 周红兵, 李茉, 等. 扬子克拉通古大陆边缘Mo 同位素特征及对有机埋藏量的指示意义. 地球科学—中国地质大学学报,2007, 32: 759–766
[61]  63 Zhou L, Zhang H Q, Wang J, et al. Assessment on redox conditions and organic burial of siliciferous sediments at the Latest PermianDalong Formation in Shangsi, Sichuan, South China. J China Univ Geosci, 2008, 19: 496–506??
[62]  64 殷鸿福, 谢树成, 秦建中, 等. 对地球生物学、生物地质学和地球生物相的一些探讨. 中国科学D 辑: 地球科学, 2008, 38: 1473–1480
[63]  65 Reitz A, Wille M, Nagler T F, et al. Atypical Mo isotopes signatures in eastern Mediterranean sediments. Chem Geol, 2007, 245: 1–8??
[64]  45 Yin H F, Zhang K X, Tong J N, et al. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 2001,24: 102–114
[65]  46 Yang Z Y, Yin H F, Wu S B, et al. Permian-Triassic boundary stratigraphy and Fauna of South China. Geological Memoirs, Series, 2, 6.Beijing: Geological Publishing House, 1987. 1–380

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133