全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

西藏羌塘龙木错-双湖缝合带南侧奥陶纪温泉石英岩碎屑锆石年龄分布模式:构造归属及物源区制约

, PP. 299-308

Keywords: 冈瓦纳大陆,青藏高原,碎屑锆石,SHRIMP定年,Hf同位素泛非运动,格林威尔-晋宁运动

Full-Text   Cite this paper   Add to My Lib

Abstract:

?温泉石英岩分布于羌塘龙木错-双湖缝合带南侧.包括温泉石英岩在内的早-中奥陶世盖层在喜马拉雅、拉萨和羌南地块广泛发育.145个年龄数据分析表明,石英岩碎屑锆石存在520~700,~800,900~1100,1800~1900和2400~2500Ma五个年龄段,其中625和950Ma年龄峰值最为明显.可靠的最年轻碎屑锆石年龄为525Ma,最老碎屑锆石年龄为3180Ma.碎屑锆石Hf同位素亏损地幔模式年龄tDM(Hf)变化很大,为750~3786Ma.研究表明:1)羌塘龙木错-双湖缝合带南侧大范围分布的浅变质碎屑沉积岩形成于前寒武纪之后;2)温泉石英岩的物源区,泛非构造岩浆热事件和格林威尔-晋宁构造岩浆热事件十分发育;3)不同时代碎屑沉积物的物源区都存在地幔添加和壳内再循环作用;4)温泉石英岩碎屑物质来自冈瓦纳大陆变质基底,羌南地块为冈瓦纳大陆的一部分.

References

[1]  14 周志广, 刘文灿, 梁定益. 藏南康马奥陶系及其底砾岩的发现并初论喜马拉雅沉积盖层与统一变质基底的关系. 地质通报, 2004, 23:655–663
[2]  15 李才, 谢尧武, 沙绍礼, 等. 藏东八宿地区泛非期花岗岩锆石SHRIMP U-Pb 定年. 地质通报, 2008, 27: 64–68
[3]  16 曾庆高, 毛国政, 王保弟, 等. 中华人民共和国1:25 万区域地质调查报告(改则县幅). 2005
[4]  17 Williams I S. U-Th-Pb geochronology by ion microprobe. In: McKibben M A, Shanks W C, Ridley W I, eds. Applications ofMicroanalytical Techniques to Understanding Mineralizing Processes. Rev Econ Geol, 1998, 7: 1–35
[5]  18 Wan Y S, Li R W, Wilde S A, et al. UHP metamorphism and exhumation of the Dabie Orogen: Evidence from SHRIMP dating of zirconand monazite from a UHP granitic gneiss cobble from the Hefei Basin. Geochim Cosmochim Acta, 2005, 69: 4333–4348??
[6]  19 Black L P, Kamo S L, Allen C M, et al. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chem Geol, 2003, 200:155–170??
[7]  20 Ludwig K R. Squid 1.02: A user’s manual. Berkeley Geochronol Centre Spec Publ, 2001, 2: 1–19
[8]  21 Black L P, Kamo S L, Williams I S, et al. The application of SHRIMP to Phanerozoic geochronology: A critical appraisal of four zirconstandards. Chem Geol, 2003, 200: 171–188??
[9]  22 Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon byexcimer laser ablation quadrupole and multiple collector ICP-MS. Chem Geol, 2008, 247: 100–117??
[10]  23 Bievre D P, Taylor P D. Table of the isotopic compositions of the elements. Int J Mass Spectrom Ion Process, 1993, 123: 149–166??
[11]  24 Chu N C, Taylor R N, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: Anevaluation of isobaric interference corrections. J Anal At Spectrom, 2002, 17: 1567–1574??
[12]  25 Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. ChemGeol, 2006, 234: 105–126
[13]  26 Elhlou S, Belousova E, Griffin W L, et al. Trace element and isotopic composition of GJ red zircon standard by laser ablation. GeochimCosmochim Acta, 2006, 70(Suppl): A158, doi: 10.1016/j.gca.2006.06.1383
[14]  27 Scherer E, Muenker C, Mezger K. Calibration of the lutetium-hafnium clock. Science, 2001, 293: 683–687??
[15]  28 Blichert-Toft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet SciLett, 1997, 148: 243–258??
[16]  29 Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. GeochimCosmochim Acta, 1999, 63: 533–556??
[17]  30 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb 年龄解释的制约. 科学通报, 2004, 49: 1589–1604
[18]  31 Rubatto D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol,2002, 184: 123–138??
[19]  32 Zheng Y F, Wu Y B, Zhao Z F, et al. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-faciesmetagranite and metabasite. Earth Planet Sci Lett, 2005, 240: 378–400??
[20]  33 Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite andgneiss in the Dabie orogen. Chem Geol, 2006, 231: 135–158??
[21]  34 Kapp P, Yin A, Manning C E, et al. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet.Tectonics, 2003, 22: 1043–1068??
[22]  35 Pullen A, Kapp P, Gehrels G E, et al. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-TethysOcean. Geology, 2008, 36: 351–354??
[23]  36 Gehrels G E, DeCelles P G, Ojha T P, et al. Geologic and U-Pb geochronologic evidence for early Paleozoic tectonism in the Dadeldhurathrust sheet, far-west Nepal Himalaya. J Asian Earth Sci, 2006, 28: 385–408??
[24]  37 Cenki B, Braun I, Brocher M. Evolution of the continental crust in the Kerala Khondalite Belt, southernmost India: Evidence from Ndisotope mapping, U-Pb and Rb-Sr geochronology. Precambrian Res, 2004, 134: 275–292??
[25]  38 Collins A S, Santosh M, Braun I, et al. Age and sedimentary provenance of the Southern Granulites, South India: U-Th-Pb SHRIMPsecondary ion mass spectrometry. Precambrian Res, 2007, 155: 125–138??
[26]  39 Burg J P, Chen G M. Tectonics and structural formation of southern Tibet, China. Nature, 1984, 311: 219–223??
[27]  40 Miller C, Th?ni M, Frank W, et al. The early Palaeozoic magmatic event in the Northwest Himalaya, India: Source, tectonic setting and ageof emplacement. Geol Mag, 2001, 138: 237–251
[28]  41 郑来林, 廖光宇, 耿全如, 等. 墨脱县幅地质调查新成果及主要进展. 地质通报, 2004, 23: 458–462
[29]  42 许志琴, 杨经绥, 梁凤华, 等. 喜马拉雅地体的泛非—早古生代造山事件年龄记录. 岩石学报, 2005, 21: 1–12
[30]  43 Liu W C, Zhou Z H, Zhang X X, et al. SHRIMP zircon geochronological constraints on a Pan-African orogeny in the Yadong area, southernTibet. Goldschmidt Conference Abstracts, 2006. A365
[31]  44 Cawood P A, Johnson M R W, Nemchin A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response toGondwana assembly. Earth Planet Sci Lett, 2007, 255: 70–84??
[32]  45 张泽明, 王金丽, 张国春, 等. 喜马拉雅造山带东构造结南迦巴瓦岩群地质年代学和前寒武纪构造演化. 岩石学报, 2008, 2:1627–1637
[33]  46 张泽明, 王金丽, 沈昆, 等. 环东冈瓦纳大陆周缘的古生代造山作用: 东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据. 岩石学报, 2008, 24: 1477–1487
[34]  47 王国芝, 王成善. 西藏羌塘基底变质岩系的解体和时代厘定. 中国科学D 辑: 地球科学, 2001, 31(增刊): 77–82
[35]  48 李永铁, 罗建宁, 卢辉楠, 等. 青藏高原地层. 北京: 科学出版社, 2001. 10–30
[36]  49 王国芝, 王成善. 西藏羌塘基底变质岩系的解体和时代厘定. 中国科学: 地球科学, 2001, 31(增刊1): 77–82
[37]  50 王成善, 伊海生, 李勇, 等. 西藏羌塘盆地地质演化与油气远景评价. 北京: 地质出版社, 2001. 1–59
[38]  51 李才. 青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年. 地质论评, 2008, 54: 600–614
[39]  52 杨子江, 李咸阳. 藏北若拉岗日结合带中的浅变质地层及其锆石SHRIMP U-Pb 年龄测定. 地质通报, 2006, 25: 118–123
[40]  53 Yoshida M, Upreti B N. Neoproterozoic India within East Gondwana: Constraints from recent geochronologic data from Himalaya.Gondwana Res, 2006, 10: 349–356??
[41]  54 胡道功, 吴珍汉, 江万, 等. 西藏念青唐古拉岩群SHRIMP 锆石U-Pb 年龄和Nd 同位素研究. 中国科学D 辑: 地球科学, 2005, 35:29–37
[42]  55 Leier A L, Kapp P, Gehrels G E, et al. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasaterrane, Southern Tibet.Basin Res, 2007, 19: 361–378??
[43]  56 Gehrels G E, Kapp P, Pullen A, et al. U-Pb basement and detrital zircon geochronology of the southern Tibetan Plateau and TethyanHimalaya. Geol Soc Amer Abstract Programs, 2008, 40: 329
[44]  57 李德威, 张雄华, 廖群安, 等. 定结县幅、陈塘区幅地质调查新成果及主要进展. 地质通报, 2004, 23: 438–443
[45]  58 多吉, 温春齐, 郭建慈, 等. 西藏4.1 Ga 碎屑锆石年龄的发现. 科学通报, 2007, 52: 19–22
[46]  59 Wilde S A, Valley J W, Peck W H, et al. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4Gyr ago. Science, 2001, 409: 175–179
[47]  60 Veevers J J. Pan-Gondwanaland post-collisional extension marked by 650–500 Ma alkaline rocks and carbonatites and related detritalzircons: A review. Earth-Sci Rev, 2007, 83: 1–47??
[48]  61 Veevers J J, Saeed A, Belousova E A, et al. U-Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zirconsin Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of theYilgarn Craton. Earth-Sci Rev, 2005, 68: 245–279
[49]  62 Veevers J J, Belousova E A, Saeed A, et al. Pan-Gondwanaland detrital zircons from Australia analysed for Hf-isotopes and trace elementsreflect an ice-covered Antarctic provenance of 700–500 Ma age, TDM of 2.0–1.0 Ga, and alkaline affinity. Earth-Sci Rev, 2006, 76:135–174
[50]  63 Li Z X, Bogdanov S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res, 2008,160: 179–210??
[51]  64 Yang Z Y, Sun Z M, Yang T S, et al. A long connection (750–380 Ma) between South China and Australia: Paleomagnetic constraints.Earth Planet Sci Lett, 2004, 220: 423–434??
[52]  65 Zhou M F, Kennedy A K, Sun M, et al. Neoproterozoic arc-related mafic intrusions along the northern margin of South China: Implicationsfor the accretion of Rodinia. J Geol, 2002, 110: 611–618??
[53]  66 Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China andcorrelations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Res, 2003, 122: 85–109??
[54]  67 Wan Y S, Liu D Y, Xu M H, et al. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks innorthwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Res, 2007,12: 166–183??
[55]  68 Li Z X, Li X H, Zhou H, et al. Grenville-aged continental collision in South China: New SHRIMP U-Pb zircon results and implications forRodinia configuration. Geology, 2002, 30: 163–166??
[56]  69 Li X H, Li Z X, Sinclair J A, et al. Revisiting the “Yanbian Terrane”: Implications for Neoproterozoic tectonic evolution of the westernYangtze Block, South China. Precambrian Res, 2006, 151: 14–30??
[57]  70 Li X H, Li W X, Li Z X, et al. 850–790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode ofcontinental rift magmatism during the breakup of Rodinia. Lithos, 2008, 102: 341–357??
[58]  71 Ye M F, Li X H, Li W X, et al. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early NeoproterozoicSibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Res, 2007, 12: 144–156??
[59]  1 李才, 李永铁, 林源贤, 等. 西藏双湖地区蓝闪片岩原岩Sm-Nd 同位素定年. 中国地质, 2002, 29: 355–359
[60]  2 李才, 程立人, 张以春, 等. 西藏羌塘南部发现奥陶纪-泥盆纪地层. 地质通报, 2004, 23: 602–604
[61]  3 李才, 程立人, 王天武, 等. 申扎县幅地质调查新成果及主要进展. 地质通报, 2004, 23: 479–483
[62]  4 李才, 翟庆国, 董永胜, 等. 青藏高原羌塘中部榴辉岩的发现及其意义. 科学通报, 2006, 51: 70–74
[63]  5 李才, 翟庆国, 董永胜, 等. 青藏高原羌塘中部果干加年山上三叠统望湖岭组的建立及意义. 地质通报, 2007, 26: 1003–1008
[64]  6 李才, 董永胜, 翟庆国, 等. 青藏高原羌塘高压变质带的特征及其构造意义. 地质通报, 2008, 27: 27–35
[65]  7 李才, 翟庆国, 陈文, 等. 青藏高原龙木错-双湖板块缝合带闭合的年代学依据—来自果干加年山蛇绿岩与流纹岩Ar-Ar 和SHRIMP 年龄制约. 岩石学报, 2007, 26: 911–918
[66]  8 李才. 羌塘基底质疑. 地质论评, 2003, 49: 5–9
[67]  9 程立人, 陈寿铭, 张以春, 等. 藏北羌塘南部发现早古生代地层及意义. 地球科学, 2007, 32: 59–62
[68]  10 Garzanti E, Casnedi R, Jadoul F. Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya. SedimentGeol, 1986, 48: 237–265
[69]  11 Gehrels G E, DeCelles P G, Martin A, et al. Initiation of the Himalayan Orogen as an early Paleozoic thin-skinned thrust belt. GSA Today,2003, 13: 4–9
[70]  12 刘文灿, 梁定益, 王克友, 等. 藏南康马地区奥陶系的发现及其地质意义. 地学前缘, 2002, 9: 247–248
[71]  13 刘文灿, 万晓樵, 梁定益, 等. 江孜县幅、亚东县幅地质调查新成果及主要进展. 地质通报, 2004, 23: 444–450

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133