8 Srinivas C V, Venkatesan R, Rao D V, et al. Numerical simulation of Andhra severe cyclone (2003): Model sensitivity to the boundary layer and convection parameterization. Pure Appl Geophys, 2007, 164: 1465-1487??
[9]
9 Mukhopadhyay P, Taraphdar S, Goswami B N. Influence of moist processes on track and intensity forecast of cyclones over the north Indian Ocean. J Geophys Res, 2011, 116: D05116??
[10]
10 Osuri K, Mohanty U, Routray A, et al. Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean. Nat Hazards, 2011, doi: 10.1007/s11069-011-9862-0
[11]
11 Raju P, Potty J, Mohanty U. Sensitivity of physical parameterizations on prediction of tropical cyclone Nargis over the Bay of Bengal using WRF model. Meteorol Atmos Phys, 2011, 113: 125-137??
[12]
12 Mandal M, Mohanty U C, Raman S. A study on the impact of parameterization of physical processes on prediction of tropical cyclones over the bay of bengal with NCAR/PSU mesoscale model. Nat Hazards, 2004, 31: 391-414??
[13]
13 Karyampudi V M, Lai G S, Manobianco J. Impact of initial conditions, rainfall assimilation, and cumulus parameterization on simulations of Hurricane Florence (1988). Mon Weather Rev, 1998, 126: 3077-3101
[14]
14 Davis C, Bosart L F. Numerical simulations of the genesis of hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon Weather Rev, 2002, 130: 1100-1124??
[15]
15 Prater B E, Evans J L. Sensitivity of modeled tropical cyclone track and structure of hurricane Irene (1999) to the convective parameterization scheme. Meteorol Atmos Phys, 2002, 80: 103-115??
[16]
16 Wang W, Barker D, Bruyère C, et al. WRF Version 3 Modeling System User’s Guide. Mesoscale & Microscale Meteorology Division, National Center for Atmospheric Research, 2008
[17]
17 Kain J S, Fritsch J M. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci, 1990, 47: 2784-2802??
[18]
18 Kain J S, Fritsch J M. Convective parameterization for mesoscale models: The Kain-Fritcsh scheme. The representation of cumulus convection in numerical models. Amer Meteoral Soc Meteoral Monogr, 1993, 24: 165-170
[19]
19 Kain J S. The Kain-Fritsch convective parameterization: An update. J Appl Meteorol, 2004, 43: 170-181??
[20]
20 Betts A K. A new convective adjustment scheme. Part I: Observational and theoretical basis. Q J R Meteorol Soc, 1986, 112: 677-691
[21]
21 Betts A K, Miller M J. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets. Q J R Meteorol Soc, 1986, 112: 693-709
[22]
22 Janjic Z I. The step-mountain coordinate: Physical package. Mon Weather Rev, 1990, 118: 1429-1443??
[23]
23 Grell G A. Devenvi D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett, 2002, 29: 1693-1696??
[24]
24 Holland G J. Tropical cyclone motion: Environmental interaction plus a Beta effect. J Atmos Sci, 1983, 40: 328-342??
[25]
25 Holland G J. Tropical cyclone motion: A comparison of theory and observation. J Atmos Sci, 1984, 41: 68-75??