全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

WRF模式中积云对流参数化方案对西北太平洋台风路径与强度模拟的影响

, PP. 1966-1978

Keywords: 台风,积云对流参数化,区域模式,路径,强度

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文利用WRF3.2版本模式研究了不同积云对流参数化方案对西北太平洋台风路径与强度模拟的影响.2003~2008年期间的20个西北太平洋台风的模拟试验结果表明,台风路径与强度的模拟对积云对流参数化方案的选择很敏感.台风路径的模拟对积云对流参数化方案的选择具有“个例依赖”的特点,即不同台风个例模拟得到的最佳路径依赖于积云对流参数化方案的选择.台风强度的模拟对积云对流参数化方案的选择的敏感性表现出不同于台风路径模拟的特点,选择Kain-Fritsch(KF)方案模拟得到的台风强度较强,与观测较为接近,而选择Betts-Miller-Janjic(BMJ)方案与Grell-Devenyi(GD)方案模拟得到的台风强度相对较弱.不同的积云对流参数化方案对台风路径与强度模拟的差异主要是由于各个方案自身采用了不同的假设,以及它们对积云降水的不同处理而造成的.台风路径的模拟差异主要是由于不同积云对流参数化方案模拟的大尺度环流场的差异造成的,模拟得到的环流场越接近观测,台风路径的模拟误差越小.台风强度模拟的差异主要是由于不同积云对流参数化方案模拟的大气垂直加热状态差异较大,这种差异导致不同方案模拟得到的对流有很大的不同,从而导致在产生不同的积云降水的过程中的潜热释放的差异.KF方案模拟得到的垂直对流最强,暖心结构明显,降水偏多,台风强度较强,BMJ方案以及GD方案模拟的对流较弱,降水范围较小,台风强度相对较弱.

References

[1]  1 Charney J G, Eliassen A. On the growth of the hurricane depression. J Atmos Sci, 1964, 21: 68-75??
[2]  2 Kuo H L. Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J Atmos Sci, 1974, 31: 1232-1240??
[3]  3 Frank W M. The cumulus parameterization problem. Mon Weather Rev, 1983, 111: 1859-1871??
[4]  4 Arakawa A. The cumulus parameterization problem: Past, present, and future. J Clim, 2004, 17: 2493-2525??
[5]  5 Molinari J, Dudek M. Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon Weather Rev, 1992, 120: 326-344??
[6]  6 高栓柱, 孟智勇, 杨贵名. 台风麦莎渤海转向的可预报性研究. 气象, 2009, 35: 8-14
[7]  7 王振会, 河惠卿, 金正润, 等. 积云参数化和微物理方案不同组合应用对台风路径模拟效果的影响. 热带气象学报, 2009, 25: 435-441
[8]  8 Srinivas C V, Venkatesan R, Rao D V, et al. Numerical simulation of Andhra severe cyclone (2003): Model sensitivity to the boundary layer and convection parameterization. Pure Appl Geophys, 2007, 164: 1465-1487??
[9]  9 Mukhopadhyay P, Taraphdar S, Goswami B N. Influence of moist processes on track and intensity forecast of cyclones over the north Indian Ocean. J Geophys Res, 2011, 116: D05116??
[10]  10 Osuri K, Mohanty U, Routray A, et al. Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean. Nat Hazards, 2011, doi: 10.1007/s11069-011-9862-0
[11]  11 Raju P, Potty J, Mohanty U. Sensitivity of physical parameterizations on prediction of tropical cyclone Nargis over the Bay of Bengal using WRF model. Meteorol Atmos Phys, 2011, 113: 125-137??
[12]  12 Mandal M, Mohanty U C, Raman S. A study on the impact of parameterization of physical processes on prediction of tropical cyclones over the bay of bengal with NCAR/PSU mesoscale model. Nat Hazards, 2004, 31: 391-414??
[13]  13 Karyampudi V M, Lai G S, Manobianco J. Impact of initial conditions, rainfall assimilation, and cumulus parameterization on simulations of Hurricane Florence (1988). Mon Weather Rev, 1998, 126: 3077-3101
[14]  14 Davis C, Bosart L F. Numerical simulations of the genesis of hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon Weather Rev, 2002, 130: 1100-1124??
[15]  15 Prater B E, Evans J L. Sensitivity of modeled tropical cyclone track and structure of hurricane Irene (1999) to the convective parameterization scheme. Meteorol Atmos Phys, 2002, 80: 103-115??
[16]  16 Wang W, Barker D, Bruyère C, et al. WRF Version 3 Modeling System User’s Guide. Mesoscale & Microscale Meteorology Division, National Center for Atmospheric Research, 2008
[17]  17 Kain J S, Fritsch J M. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci, 1990, 47: 2784-2802??
[18]  18 Kain J S, Fritsch J M. Convective parameterization for mesoscale models: The Kain-Fritcsh scheme. The representation of cumulus convection in numerical models. Amer Meteoral Soc Meteoral Monogr, 1993, 24: 165-170
[19]  19 Kain J S. The Kain-Fritsch convective parameterization: An update. J Appl Meteorol, 2004, 43: 170-181??
[20]  20 Betts A K. A new convective adjustment scheme. Part I: Observational and theoretical basis. Q J R Meteorol Soc, 1986, 112: 677-691
[21]  21 Betts A K, Miller M J. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets. Q J R Meteorol Soc, 1986, 112: 693-709
[22]  22 Janjic Z I. The step-mountain coordinate: Physical package. Mon Weather Rev, 1990, 118: 1429-1443??
[23]  23 Grell G A. Devenvi D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett, 2002, 29: 1693-1696??
[24]  24 Holland G J. Tropical cyclone motion: Environmental interaction plus a Beta effect. J Atmos Sci, 1983, 40: 328-342??
[25]  25 Holland G J. Tropical cyclone motion: A comparison of theory and observation. J Atmos Sci, 1984, 41: 68-75??
[26]  26 陈联寿, 孟智勇. 我国热带气旋研究十年进展. 大气科学, 2001, 25: 420-432

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133