1 Schwark L. Hydrocarbons in the pedosphere. In: Timmis K N, ed. Handbook of Hydrocarbon and Lipid Microbiology. Berlin-Heidelberg: Springer, 2010. 279-295
[2]
2 Lei G, Zhang H, Chang F, et al. Biomarkers of modern plants and soils from Xinglong Mountain in the transitional area between the Tibetan and Loess Plateaus. Quat Int, 2010, 218: 143-150??
[3]
3 Tulloch A P. Chemistry of waxes of higher plants. In: Kolattukudy P E, ed. Chemistry and Biochemistry of Natural Waxes. Amsterdam: Elsevier, 1976. 235-287
[4]
4 Eglinton G, Hamilton R J. Leaf epicuticular waxes. Science, 1967, 156: 1322-1335??
[5]
5 Jetter R, Kunst L, Samuels A L. Composition of plant cuticular waxes. In: Riederer M, Müller C, eds. Biology of the Plant Cuticle. Oxford: Blackwell Publishing Ltd, 2006. 145-181
[6]
6 Bray E E, Evans E D. Distribution of n-paraffins as a clue to recognition of source beds. Geochim Cosmochim Acta, 1961, 22: 2-15??
[7]
7 Tissot B P, Welte D H. Petroleum Formation and Occurrence. Berlin: Springer-Verlag, 1984
[8]
8 Peters K E, Walters C C, Moldowan J M. The Biomarker Guide. Cambridge: Cambridge University Press, 2005
[9]
9 Allan J, Douglas A G. Variations in the content and distribution of n-alkanes in a series of carboniferous vitrinites and sporinites of bituminous rank. Geochim Cosmochim Acta, 1977, 41: 1223-1230??
[10]
10 Ishiwatari R, Hirakawa Y, Uzaki M, et al. Organic geochemistry of the Japan Sea sediments-1: Bulk organic matter and hydrocarbon analyses of Core KH-79-3, C-3 from the Oki Ridge for paleoenvironment assessments. J Oceanogr, 1994, 50: 179-195
[11]
11 Zhang Z, Zhao M, Eglinton G, et al. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr. Quat Sci Rev, 2006, 25: 575-594??
[12]
12 Xie S, Guo J, Huang J, et al. Restricted utility of d 13C of bulk organic matter as a record of paleovegetation in some loess-paleosol sequences in the Chinese Loess Plateau. Quat Res, 2004, 62: 86-93??
[13]
13 Liu W G, Huang Y S. Compound specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicators in the Chinese Loess Plateau. Org Geochem, 2005, 36: 851-860??
[14]
14 Bai Y, Fang X, Nie J, et al. A preliminary reconstruction of the paleoecological and paleoclimatic history of the Chinese Loess Plateau from the application of biomarkers. Palaeogeogr Palaeoclimat Palaeoecol, 2009, 271: 161-169??
[15]
15 Zhou W, Xie S, Meyers P A, et al. Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence. Org Geochem, 2005, 36: 1272-1284??
[16]
16 Rao Z, Zhu Z, Wang S, et al. CPI values of terrestrial higher plant-derived long-chain n-alkanes: A potential paleoclimatic proxy. Front Earth Sci China, 2009, 3: 266-272??
[17]
17 Huang Y, Bol R, Harkness D D, et al. Post-glacial variations in distributions, 13C and 14C contents of aliphatic hydrocarbons and bulk organic matter in three types of British acid upland soils. Org Geochem, 1996, 24: 273-287
[18]
18 Freeman K H, Colarusso L A. Molecular and isotopic records of C4 grassland expansion in the late miocene. Geochim Cosmochim Acta, 2001, 65: 1439-1454??
[19]
19 Kawamura K, Ishimura Y, Yamazaki K. Four years’ observations of terrestrial lipid class compounds in marine aerosols from the western North Pacific. Global Biogeochem Cycle, 2003, 17: 1003??
[20]
20 Xie S, Chen F, Wang Z, et al. Lipid distributions in loess-paleosol sequences from northwest China. Org Geochem, 2003, 34: 1071-1079??
[21]
21 Fang J Y, Song Y C, Liu H Y, et al. Vegetation-climate relationship and its application in the division of vegetation zone in China. Acta Bot Sin, 2002, 44: 1105-1122
[22]
22 Lu H Y, Wu N Q, Yang X D, et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China I: Phytolith-based transfer functions. Quat Sci Rev, 2006, 25: 945-959??
[23]
23 Luo P, Peng P A, Gleixner G, et al. Empirical relationship between leaf wax n-alkane d D and altitude in the Wuyi, Shennongjia and Tianshan Mountains, China: Implications for paleoaltimetry. Earth Planet Sci Lett, 2011, 301: 285-296??
[24]
24 Collister J W, Rieley G, Stern B, et al. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms. Org Geochem, 1994, 21: 619-627??
[25]
25 Nishimura M, Baker E W. Possible origin of n-alkanes with a remarkable even-to-odd predominance in recent marine sediments. Geochim Cosmochim Acta, 1986, 50: 299-305??
[26]
26 Grimalt J, Albaigés J. Sources and occurrence of C12-C22 n-alkane distributions with even carbon-number preference in sedimentary environments. Geochim Cosmochim Acta, 1987, 51: 1379-1384??
[27]
27 Elias V O, Simoneit B R T, Cardoso J N. Even n-alkane predominances on the Amazon Shelf and a northeast Pacific hydrothermal system. Naturwissenschaften, 1997, 84: 415-420??
[28]
28 Clark Jr R C, Blumer M. Distribution of n-paraffins in marine organisms and sediment. Limnol Oceanogr, 1967, 12: 79-87??
[29]
29 Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biol, 1973, 3: 259-265??
[30]
30 Han J, Calvin M. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proc Natl Acad Sci USA, 1969, 64: 436-443??
[31]
31 Baas M, Pancost R, van Geel B, et al. A comparative study of lipids in Sphagnum species. Org Geochem, 2000, 31: 535-541??
[32]
32 Maffei M. Chemotaxonomic significance of leaf wax alkanes in the gramineae. Biochem Syst Ecol, 1996, 24: 53-64??
[33]
33 Jansen B, Nierop K G J, Hageman J A, et al. The straight-chain lipid biomarker composition of plant species responsible for the dominant biomass production along two altitudinal transects in the Ecuadorian Andes. Org Geochem, 2006, 37: 1514-1536??
[34]
34 Sachse D, Radke J, Gleixner G. δD values of individual n-alkanes from terrestrial plants along a climatic gradient-- Implications for the sedimentary biomarker record. Org Geochem, 2006, 37: 469-483??
[35]
35 Pancost R D, Boot C S. The palaeoclimatic utility of terrestrial biomarkers in marine sediments. Mar Chem, 2004, 92: 239-261??
37 Otto A, Simpson M. Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from western Canada. Biogeochemistry, 2005, 74: 377-409??
[38]
38 van Beilen J, B Li Z, Duetz W A, et al. Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol, 2003, 58: 427-440??
[39]
39 Jansen B, Nierop K G J. Methyl ketones in high altitude Ecuadorian Andosols confirm excellent conservation of plant-specific n-alkane patterns. Org Geochem, 2009, 40: 61-69??
41 Rieley G, Collier R J, Jones D M, et al. The biogeochemistry of Ellesmere Lake, U.K-- I: Source correlation of leaf wax inputs to the sedimentary lipid record. Org Geochem, 1991, 17: 901-912??
[42]
42 Rommerskirchen F, Plader A, Eglinton G, et al. Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes. Org Geochem, 2006, 37: 1303-1332??
[43]
43 Vogts A, Moossen H, Rommerskirchen F, et al. Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species. Org Geochem, 2009, 40: 1037-1054??
[44]
44 Abas M R, Simoneit B R T. Wax lipids from leaf surfaces of some common plants of Malaysia. Pertanika J Sci Technol, 1998, 6: 171-182
[45]
45 Chikaraishi Y, Naraoka H. Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry, 2003, 63: 361-371??
[46]
46 Bi X, Sheng G, Liu X, et al. Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes. Org Geochem, 2005, 36: 1405-1417??
[47]
47 Chikaraishi Y, Naraoka H. Carbon and hydrogen isotope variation of plant biomarkers in a plant-soil system. Chem Geol, 2006, 231: 190-202??
[48]
48 Jia C, Zhou A, Ma X, et al. Simulation experiments on the variation of leaf n-alkanes in aquatic environments. Front Earth Sci China, 2009, 3: 231-236??
[49]
49 Ladygina N, Dedyukhina E G, Vainshtein M B. A review on microbial synthesis of hydrocarbons. Proc Biochem, 2006, 41: 1001-1014??
[50]
50 Zygadlo J A, Pignata M L, Gonzalez C M, et al. Alkanes in lichens. Phytochemistry, 1993, 32: 1453-1456??
[51]
51 Weete J D. Algal and fungal waxes. In: Kolattukudy P E, ed. Chemistry and Biochemistry of Natural Waxes. Amsterdam: Elsevier, 1976. 349-418
[52]
52 Orò J, Laseter J L, Weber D. Alkanes in fungal spores. Science, 1966, 154: 399-400??
[53]
53 Blumer M, Guillard R R L, Chase T. Hydrocarbons of marine phytoplankton. Mar Biol, 1971, 8: 183-189??
[54]
54 Gelpi E, Schneider H, Mann J, et al. Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry, 1970, 9: 603-612??
[55]
55 Qin J G. Hydrocarbons from Algae. In: Timmis K N, ed. Handbook of Hydrocarbon and Lipid Microbiology. Berlin-Heidelberg: Springer, 2010. 2817-2826
[56]
56 Volkman J K, Barrett S M, Blackburn S I, et al. Microalgal biomarkers: A review of recent research developments. Org Geochem, 1998, 29: 1163-1179??
[57]
57 Albro P W. Bacterial waxes. In: Kolattukudy P E, ed. Chemistry and Biochemistry of Natural Waxes. Amsterdam: Elsevier, 1976. 419-445
[58]
58 Jones J G. Studies on lipids of soil micro-organisms with particular reference to hydrocarbons. J Gen Microbiol, 1969, 59: 145-152??
[59]
59 Cranwell P A. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment. Org Geochem, 1981, 3: 79-89??
[60]
60 Meyers P A, Ishiwatari R. Lacustrine organic geochemistry-- An overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem, 1993, 20: 867-900??
[61]
61 Head I M, Jones D M, Larter S R. Biological activity in the deep subsurface and the origin of heavy oil. Nature, 2003, 426: 344-352??
[62]
62 Wentzel A, Ellingsen T, Kotlar H K, et al. Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biot, 2007, 76: 1209-1221??
[63]
63 Grimalt J O, Torras E, Albaigés J. Bacterial reworking of sedimentary lipids during sample storage. Org Geochem, 1988, 13: 741-746??
[64]
64 Johnson R W, Calder J A. Early diagenesis of fatty acids and hydrocarbons in a salt marsh environment. Geochim Cosmochim Acta, 1973, 37: 1943-1955??
[65]
65 Walker J D, Cooney J J. Aliphatic hydrocarbons of Cladosporium resinae cultured on glucose, glutamic acid, and hydrocarbons. Appl Environ Microbiol, 1973, 26: 705-708
[66]
66 Buggle B, Wiesenberg G L B, Glaser B. Is there a possibility to correct fossil n-alkane data for postsedimentary alteration effects? Appl Geochem, 2010, 25: 947-957
[67]
67 Marseille F, Disnar J R, Guillet B, et al. n-Alkanes and free fatty acids in humus and A1 horizons of soils under beech, spruce and grass in the Massif-Central (Mont-Lozère), France. Eur J Soil Sci, 1999, 50: 433-441??
[68]
68 Mohanty G, Mukherji S. Biodegradation rate of diesel range n-alkanes by bacterial cultures Exiguobacterium aurantiacum and Burkholderia cepacia. Int Biodeter Biodegr, 2008, 61: 240-250??
[69]
69 Meyers P A, Eadie B J. Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan. Org Geochem, 1993, 20: 47-56??
[70]
70 Sanderman J, Amundson R. Biogeochemistry of decomposition and detrital processing. In: Holland H D, Urekian K K, eds. Treatise on Geochemistry. Amsterdam: Elsevier, 2003. 249-314
[71]
71 Voroney R P. The soil habitat. In: Paul E A, ed. Soil Microbiology, Ecology, and Biochemistry. 3nd ed. Burlington: Academic Press, 2007. 25-49
[72]
72 Gupta N S, Pancost R D. Biomolecular and physical taphonomy of angiosperm leaf during early decay: Implications for fossilization. Palaios, 2004, 19: 428-440??