1 Cawthorn R G, McCarthy T S. Variations in Cr content of magnetite from the upper zone of the Bushveld Complex--Evidence for heterogeneity and convection currents in magma chambers. Earth Planet Sci Lett, 1980, 46: 335-343??
[2]
2 Tegner C, Cawthorn R G, Kruger F J. Cyclicity in the main and upper zones of the Bushveld Complex, South Africa: Crystallization from a zoned magma sheet. J Petrol, 2006, 47: 2257-2279??
[3]
11 Zhou M F, Malpas J, Song X Y, et al. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth Planet Sci Lett, 2002, 196: 113-122??
[4]
12 Pang K N, Li C, Zhou M F, et al. Mineral compositional constraints on petrogenesis and oxide ore genesis of the late Permian Panzhihua layered gabbroic intrusion, SW China. Lithos, 2009, 110: 199-214??
[5]
13 Chung S L, Jahn B M. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology, 1995, 23: 889-892??
[6]
14 Xu Y G, Chung S L, Jahn B M, et al. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos, 2001, 58: 145-168??
[7]
15 Zhang Z C, Mahoney J J, Mao J W, et al. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. J Petro, 2006, 47: 1997-2019??
19 Zhong H, Zhou X H, Zhou M F, et al. Platinum-group element geochemistry of the Hongge Fe-V-Ti deposit in the Pan-Xi area, southwestern China. Mineral Depos, 2002, 37: 226-239??
21 Shellnutt J G, Zhou M F, Zellmer G F. The role of Fe-Ti oxide crystallization in the formation in the formation of A-type granitoids with implication for the Daly gap: An example from the Permian Baima igneous complex, SW China. Chem Geol, 2009, 259: 204-217??
[14]
22 Reynolds I M. The nature and origin of titaniferous magnetite-rich layers in the upper zone of the Bushveld complex: A review and synthesis. Econ Geol, 1985, 80: 1089-1108??
[15]
23 Zhang M J, Hu P Q, Niu Y L, et al. Chemical and stable isotopic constraints on the nature and origin of volatiles in the sub-continental lithospheric mantle beneath eastern China. Lithos, 2007, 96: 55-66??
[16]
24 Zhang M J, Niu Y L, Hu P Q. Volatiles in the mantle lithosphere: modes of occurrence and chemical compositions. In: Anderson J E, Coates R W, eds. The Lithosphere: Geochemistry, Geology and Geophysics. New York: Nova Science Publishers Inc, 2009. 171-212
27 Kyser T K. Stable isotope variation in the mantle. In: Valley J W, Taylor Jr H P, O’Neil J R, eds. Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy and Geochemistry, Vol 16. Washington DC: Mineral Soc Amer, 1986. 141-164
[20]
28 Sheppard S M F. Characterization and isotopic variations in natural waters. In: Valley J W, Taylor Jr H P, O’Neil J R, eds. Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy and Geochemistry, Vol 16. Washington DC: Mineral Soc Amer, 1986. 165-183
[21]
29 Deines P. The carbon isotope geochemistry of mantle xenoliths. Earth-Sci Rev, 2002, 58: 247-278??
[22]
30 Taylor H P, Frechen J, Degens E T. Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Aln? District, Sweden. Geochim Cosmochim Acta, 1967, 31: 407-430
[23]
31 郑永飞, 陈江峰. 稳定同位素地球化学. 北京: 科学出版社, 2000. 316
[24]
32 Yang J D, Sun W G, Wang Z Z, et al. Variations in Sr and C isotopes and Ce anomalies in successions from China: Evidence for the oxygenation of Neoproterozoic seawater? Precambrian Res, 1999, 93: 215-233
[25]
33 Shen Y N. C-isotope variations and paleoceanographic changes during the late Neoproterozoic on the Yangtze Platform, China. Precambrian Res, 2002, 113: 121-133??
[26]
34 Ling H F, Feng H Z, Pan J Y, et al. Carbon isotope variation through the Neoproterozoic Doushantuo and Dengying Formations, South China: Implications for chemostratigraphy and paleoenvironmental change. Paleogeogr Paleoclimat Paleoecol, 2007, 254: 158-174??
[27]
35 Eiler J M, Farley K A, Valley J W, et al. Oxygen isotope variations in ocean island basalt phenocrysts. Geochim Cosmochim Acta, 1997, 61: 2281-2293??
37 Wang C Y, Zhou M F, Qi L. Permian flood basalts and mafic intrusions in the Jinping (SW China)-Song Da (northern Vietnam) district: Mantle sources, crustal contamination and sulfide segregation. Chem Geol, 2007, 243: 317-343??
[30]
38 Mysen B O, Fogel M. Nitrogen and hydrogen isotope compositions and solubility in silicate melts in equilibrium with reduced (N+H)-bearing fluids at high pressure and temperature: Effects of melt structure. Am Mineral, 2010, 95: 987-999??
[31]
39 Hamilton D L, Burnham C W, Osborn E F. The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magma. J Petrol, 1964, 5: 21-39
[32]
40 Skogby H, Rossman G R. OH- in pyroxene: An experimental study of incorporation mechanism and stability. Am Mineral, 1989, 74: 1059-1069
[33]
41 Lambert D D, Frick L R, Foster J G, et al. Re-Os isotopic systematics of the Voisey’s Bay Ni-Cu-Co magmatic sulfide system. Canada: II. Implications for parental magma chemistry, ore genesis, and metal redistribution. Econ Geol, 2000, 95: 867-888
[34]
42 Mattey D P. Carbon dioxide solubility and carbon isotope fractionation in basaltic melt. Geochim Cosmochim Acta, 1991, 55: 3467-3473??
[35]
43 Barati M, Coley K S. Kinetics of CO-CO2 reaction with CaO-SiO2-FeOx melts. Met Mat T B, 2005, 36: 169-178
[36]
44 Osborn E F. The role of oxygen pressure in the crystallization and differentiation of basaltic magma. Am J Sci, 1959, 257: 609-647??
[37]
45 Sisson T W, Grove T L. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol, 1993, 113: 143-166??
[38]
46 Müntener O, Kelemen P B, Grove T L. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: An experimental study. Contrib Mineral Petrol, 2001, 141: 643-658??
[39]
47 Dixon J E, Clague D A. Volatiles in basaltic glasses from Loihi Seamount, Hawaii: Evidence for a relatively dry plume component. J Petrol, 2001, 42: 627-654??
[40]
48 Weidner J R. Iron-oxide magmas in the system Fe-C-O. Can Mineral, 1982, 20: 555-566
[41]
49 Berndt J, Koepke J, Holtz F. An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J Petrol, 2005, 46: 135-167
[42]
50 Feig S T, Koepke J, Snow J E. Effect of water on tholeiitic basalt phase equilibria: An experimental study under oxidizing conditions. Contrib Mineral Petro, 2006, 152: 611-638??
[43]
51 Schulze F, Behrens H, Holtz F, et al. The influence of H2O on the viscosity of a haplogranitic melt. Am Mineral, 1996, 81: 1155-1165
4 Lu J R, Zhang G D, Zhang C X, et al. A genetic model for the layered intrusions and related V-Ti-magnetite deposits in Panzhihua-Xichang Region, Southwest China. Chin J Geochem, 1989, 8: 126-134??
6 Zhou M F, Robinson P T, Lesher C M, et al. Geochemistry, petrogenesis and metallogenesis of the Panzhihua intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China. J Petrol, 2005, 46: 2253-2280??
[48]
7 Pang K N, Zhou M F, Lindsley D, et al. Origin of Fe-Ti oxide ores in mafic intrusions: Evidence from the Panzhihua intrusion, SW China. J Petrol, 2008, 49: 295-313
[49]
8 Pang K N, Li C, Zhou M F, et al. Abundant Fe-Ti oxide inclusions in olivine from the Panzhihua and Hongge layered intrusions, SW China: Evidence for early saturation of Fe-Ti oxides in ferrobasaltic magma. Contrib Mineral Petrol, 2008, 156: 307-321??
[50]
9 Ganino C, Arndt N T, Zhou M F, et al. Interaction of magma with sedimentary wall rock and magnetite ore genesis in the Panzhihua mafic intrusion, SW China. Mineral Depos, 2008, 43: 677-694??
[51]
10 Zhang Z C, Mao J W, Saunders A D, et al. Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints. Lithos, 2009, 113: 369-392??