26 Jaffey A H, Flynn K F, Glendenin L E, et al. Precision measurement of half lives and specific activities of 235U and 238U. Phys Rev C, 1971, 4: 1889-1906
[2]
27 Naeser C W, Fleischer R L. The age of the apatite at Cerro de Mercado, Mexico: A problem for fission track annealing corrections, Geophys Res Lett, 1975, 2: 67-70
[3]
28 Hurley P M, Fairbairn H W. Abundance and distribution of uranium and thorium in zircon, sphene, apatite, epidote and monazite in granitic rocks. Trans Am Geophys Union, 1957, 38: 939-944
[4]
29 Young E J, Myers A T, Munson E L, et al. Mineralogy and geochemistry of fluorapatite from Cerro de Mercado. In: HIckel W J, Pecora W T, eds. Geological Surrey Professional PaPer 650-D. Washington: United Staces Government Printing Office, 1969
[5]
30 House M A, Farley K A, Stockli D. Helium chronometry of apatite and titanite using Nd-YAG laser heating. Earth Planet Sci Lett, 2000, 183: 365-368Iunes P J, Bigazzi G, Hadler J C, et al. The Th/U ratio in minerals by a fission-track technique: Application to some reference samples in order to estimate the influence of Th in fission-track dating. Radiat Meas, 2002, 35: 195-201
[6]
1 Fleischer R L, Price P B, Walker R M. Nuclear Tracks in Solids: Principles and Applications. Berkeley: University of California Press, 1975
[7]
2 Hurford A J, Green P F. A users’ guide to fission track dating calibration. Earth Planet Sci Lett, 1982, 59: 343-354
[8]
3 Hurford A J, Green P F. The zeta age calibration of fission-track dating. Chem Geol, 1983, 41: 285-317
[9]
4 Wagner G A, Van den Haute P. Fission Track Dating. Amsterdam: Elsevier, 1992
[10]
5 Hasebe N, Barbarand J, Jarvis K, et al. Apatite fission-track chronometry using laser ablation ICP-MS. Chem Geol, 2004, 207: 135-145
[11]
6 Hadler J C, Iunes P J, Telloet C A, et al. Experimental study of a methodology for Fission-track Dating without neutron irradiation. Rad Meas, 2009, 44: 955-957
[12]
7 Green P F, Duddy I R, Gleadow A J W, et al. Apatite fission track analysis as a paleotemperature indicator for hydrocarbon exploration. In: Naeser N D, McCulloh T, eds. Thermal History analysis in Sedimentary Basins. Berlin: Springer, 1989. 181-195
[13]
8 Brown R W. Backstacking apatite fission-track “stratigraphy”: A method for resolving the erosional and isostatic rebound components of tectonic uplift histories. Geology, 1991, 19: 74-77
[14]
9 Zheng D W, Zhang P Z, Wan J L, et al. Rapid exhumation at ~ 8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth Planet Sci Lett, 2006, 248: 198-208
[15]
10 Glotzbach C, Bernet M, van der Beek P, et al. Detrital thermochronology records changing source areas and steady exhumation in the Western European Alps. Geology, 2011, 39: 239-242
20 Cowan G A, Adler H H. The variability of the natural abundance of 235U. Geochim Cosmochim Acta, 1976, 40: 1487-1490
[26]
21 Crowley K D. Neutron dosimetry in fission-track analysis. Nucl Tracks Radiat Mem, 1986, 11: 237-243
[27]
22 Bigzzi G, Guedes S, Hadler J C, et al. Potentialities and practical limitations of absolute neutron dosimetry using thin films of uranium and thorium applied to the fission track dating. Radiat Meas, 1999, 31: 651-656
24 Carpenter B S. Calibrated glass standards for fission track use—Supplement. Gaithersburg and Washington: US Dept of Commerce, 1984
[30]
25 Bellemans F, DeCorte F, Van DenHaute P, et al. Composition of srm and cn u-doped glasses: Significance for their use as thermal neutron fluence monitors in fission track dating. Radiat Meas, 1995, 24: 153-160