全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中子热化不充分对裂变径迹年龄测定影响的初步研究

, PP. 1559-1567

Keywords: 中子热化,裂变径迹测年,232Th/238U比值

Full-Text   Cite this paper   Add to My Lib

Abstract:

?裂变径迹测年方法中,母体的测量是通过热中子诱发235U裂变产生的诱发裂变径迹间接测得的.当热化不充分时,还会诱发238U和232Th裂变,造成母体测量的误差.因此,中子热化充分与否对年龄测试结果存在重要影响.2007年,由于安全生产的原因,原101反应堆关闭,本研究尝试492反应堆做热中子辐照的可行性及从理论上探讨相关因素对裂变径迹结果可能的影响.本文采用SRM612和CN5标准玻璃成对辐照方法,通过多次的监测结果,研究了反应堆中子热化(thermalization)的情况.研究表明,热中子在空间上(无论在横向上,还是在纵向上)表现出不均匀性,特别是横向上的不均匀性较大.但是在原子能反应堆中适当的位置,可以满足裂变径迹测试的辐照条件.本文计算、评估了当前热化不充分条件对裂变径迹年龄测定的影响,发现影响年龄的主要因素是标准样与样品中的232Th/238U比值.当样品中的232Th/238U比值与标准样品一致时,对测试结果无影响;当样品的232Th/238U比值大于标准样品232Th/238U比值时,测试结果偏小;相反,则偏大.研究认为,为了减小辐照带来的误差,应严格地限定辐照的通道及位置,另外减小每包的样品量,降低横向上热化不均匀性的影响,也是减小误差的一种方式.

References

[1]  26 Jaffey A H, Flynn K F, Glendenin L E, et al. Precision measurement of half lives and specific activities of 235U and 238U. Phys Rev C, 1971, 4: 1889-1906
[2]  27 Naeser C W, Fleischer R L. The age of the apatite at Cerro de Mercado, Mexico: A problem for fission track annealing corrections, Geophys Res Lett, 1975, 2: 67-70
[3]  28 Hurley P M, Fairbairn H W. Abundance and distribution of uranium and thorium in zircon, sphene, apatite, epidote and monazite in granitic rocks. Trans Am Geophys Union, 1957, 38: 939-944
[4]  29 Young E J, Myers A T, Munson E L, et al. Mineralogy and geochemistry of fluorapatite from Cerro de Mercado. In: HIckel W J, Pecora W T, eds. Geological Surrey Professional PaPer 650-D. Washington: United Staces Government Printing Office, 1969
[5]  30 House M A, Farley K A, Stockli D. Helium chronometry of apatite and titanite using Nd-YAG laser heating. Earth Planet Sci Lett, 2000, 183: 365-368Iunes P J, Bigazzi G, Hadler J C, et al. The Th/U ratio in minerals by a fission-track technique: Application to some reference samples in order to estimate the influence of Th in fission-track dating. Radiat Meas, 2002, 35: 195-201
[6]  1 Fleischer R L, Price P B, Walker R M. Nuclear Tracks in Solids: Principles and Applications. Berkeley: University of California Press, 1975
[7]  2 Hurford A J, Green P F. A users’ guide to fission track dating calibration. Earth Planet Sci Lett, 1982, 59: 343-354
[8]  3 Hurford A J, Green P F. The zeta age calibration of fission-track dating. Chem Geol, 1983, 41: 285-317
[9]  4 Wagner G A, Van den Haute P. Fission Track Dating. Amsterdam: Elsevier, 1992
[10]  5 Hasebe N, Barbarand J, Jarvis K, et al. Apatite fission-track chronometry using laser ablation ICP-MS. Chem Geol, 2004, 207: 135-145
[11]  6 Hadler J C, Iunes P J, Telloet C A, et al. Experimental study of a methodology for Fission-track Dating without neutron irradiation. Rad Meas, 2009, 44: 955-957
[12]  7 Green P F, Duddy I R, Gleadow A J W, et al. Apatite fission track analysis as a paleotemperature indicator for hydrocarbon exploration. In: Naeser N D, McCulloh T, eds. Thermal History analysis in Sedimentary Basins. Berlin: Springer, 1989. 181-195
[13]  8 Brown R W. Backstacking apatite fission-track “stratigraphy”: A method for resolving the erosional and isostatic rebound components of tectonic uplift histories. Geology, 1991, 19: 74-77
[14]  9 Zheng D W, Zhang P Z, Wan J L, et al. Rapid exhumation at ~ 8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth Planet Sci Lett, 2006, 248: 198-208
[15]  10 Glotzbach C, Bernet M, van der Beek P, et al. Detrital thermochronology records changing source areas and steady exhumation in the Western European Alps. Geology, 2011, 39: 239-242
[16]  11 王庆隆, 戎嘉树, 赵云龙, 等. 裂变碎片径迹技术及其在地球化学中的应用. 北京: 科学出版社, 1984
[17]  12 陈文寄, 彭贵. 年轻地质体系的年代测定. 北京: 地震出版社, 1991
[18]  13 丁林, 鈡大赉, 潘裕生, 等. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据. 科学通报, 1995, 40: 1479-1500
[19]  14 郑德文, 张培震, 万景林, 等. 六盘山盆地热历史的裂变径迹证据. 地球物理学报, 2005, 48: 157-164
[20]  15 朱文斌, 张志勇, 舒良树, 等. 塔里木北缘前寒武基底隆升剥露史: 来自磷灰石裂变径迹的证据. 岩石学报, 2007, 23: 167-1682
[21]  16 袁万明, 保增宽, 董金泉, 等. 新疆土屋一延东斑岩铜矿区成矿时代与构造活动的裂变径迹分析. 中国科学D辑: 地球科学, 2007, 37: 1130-1137
[22]  17 陈正乐, 李丽, 刘健, 等. 西天山隆升-剥露过程初步研究. 岩石学报, 2008, 24: 625-636
[23]  18 万景林, 郑文俊, 郑德文, 等. 祁连山北缘晚新生代构造活动的低温热年代学证据. 地球化学, 2010, 39: 439-446
[24]  19 刘建辉, 张培震, 郑德文, 等. 秦岭太白山新生代隆升冷却历史的磷灰石裂变径迹分析. 地球物理学报, 2010, 53: 2405-2414
[25]  20 Cowan G A, Adler H H. The variability of the natural abundance of 235U. Geochim Cosmochim Acta, 1976, 40: 1487-1490
[26]  21 Crowley K D. Neutron dosimetry in fission-track analysis. Nucl Tracks Radiat Mem, 1986, 11: 237-243
[27]  22 Bigzzi G, Guedes S, Hadler J C, et al. Potentialities and practical limitations of absolute neutron dosimetry using thin films of uranium and thorium applied to the fission track dating. Radiat Meas, 1999, 31: 651-656
[28]  23 王非, 贺怀宇, 朱日祥, 等. 40Ar/39Ar年代学国际国内标样的对比标定. 中国科学D辑: 地球科学, 2005, 35: 617-626
[29]  24 Carpenter B S. Calibrated glass standards for fission track use—Supplement. Gaithersburg and Washington: US Dept of Commerce, 1984
[30]  25 Bellemans F, DeCorte F, Van DenHaute P, et al. Composition of srm and cn u-doped glasses: Significance for their use as thermal neutron fluence monitors in fission track dating. Radiat Meas, 1995, 24: 153-160

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133