全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

深部碳循环及同位素示踪:回顾与展望

, PP. 1459-1472

Keywords: 深部碳,碳循环,Ca同位素,Mg同位素

Full-Text   Cite this paper   Add to My Lib

Abstract:

?深部碳循环是全球碳循环中的重要组成部分,它指通过板块俯冲过程把大洋底部的碳酸盐岩带到地幔中,然后再通过火山作用以CO2气体形式释放到大气中.目前对于深部碳循环的研究仍处在一个起步阶段.其中一个很重要的科学问题是火山作用释放的CO2中与俯冲相关的碳和原始幔源碳的比例.传统碳同位素可以很好的区分有机碳和无机碳,但火山作用释放的CO2中,大约95%的与俯冲相关的碳和原始幔源碳均是无机碳,因此传统的碳同位素方法无法区分.近年来Ca和Mg同位素在示踪壳内物质循环方面的研究取得很大的进展,本文针对以上科学问题,总结了近年来对于深部碳存储总量、通量及存在形式,洋壳俯冲过程中碳的行为,含碳地幔的熔融,深入探讨了C,Ca和Mg同位素示踪深部碳循环的原理和途径,以及前人在C,Ca和Mg同位素示踪深部碳循环等方面的研究成果.

References

[1]  43 沈晓洁, 张立飞. 碳酸盐化榴辉岩的岩石学研究进展. 地学前缘, 2009, 16: 374-384
[2]  44 Johnston F K B, Turchyn A V, Edmonds M. Decarbonation efficiency in subduction zones: Implications for warm Cretaceous climates. Earth Planet Sci Lett, 2011, 303: 143-152
[3]  45 Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol, 1998, 145: 325-394
[4]  46 Carlson R L, Herrick C N. Densities and porosities in the oceanic crust and their variations with depth and age. J Geophys Res, 1990, 95: 9153-9170
[5]  47 Reymer A, Schubert G. Phanerozoic addition rates to the continental crust and crustal growth. Tectonics, 1984, 3: 63-77
[6]  48 Marty B, Tolstikhin I N. CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem Geol, 1998, 145: 233-248
[7]  49 Wang C Y. Density and constitution of the mantle. J Geophys Res, 1970, 75: 3264-3284
[8]  50 Hayes J M, Waldbauer J R. The carbon cycle and associated redox processes through time. Phil Trans R Soc B, 2006, 361: 931-950
[9]  51 Hilton D R, Fischer T P, Marty B. Noble gases and volatile recycling at subduction zones. Rev Mineral Geochem, 2002, 47: 319-370
[10]  52 Sano Y, Williams S N. Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys Res Lett, 1996, 23: 2749-2752
[11]  53 Ingebritsen S E, Manning C E. Diffuse fluid flux through orogenic belts: Implications for the world ocean. Proc Nat Acad Sci USA, 2002, 99: 9113-9116
[12]  54 Blundy J, Cashman K V, Rust A, et al. A case for CO2-rich arc magmas. Earth Planet Sci Lett, 2010, 290: 289-301
[13]  55 Bulanova G P, Walter M J, Smith C B, et al. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib Mineral Petrol, 2010, 160: 489-510
[14]  56 Muehlenbachs K, Byerly G. 18O-Enrichment of silicic magmas caused by crystal fractionation at the Galapagos Spreading Center. Contrib Mineral Petrol, 1982, 79: 76-79
[15]  57 Teng F Z, Dauphas N, Helz R T. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake. Science, 2008, 320: 1620-1622
[16]  58 Schuessler J A, Schoenberg R, Sigmarsson O. Iron and lithium isotope systematics of the Hekla volcano, Iceland—Evidence for Fe isotope fractionation during magma differentiation. Chem Geol, 2009, 258: 78-91
[17]  59 Teng F Z, Wadhwa M, Helz R T. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle. Earth Planet Sci Lett, 2007, 261: 84-92
[18]  60 Liu S A, Teng F Z, He Y S, et al. Investigation of magnesium isotope fractionation during granite differentiation: Implication for Mg isotopic composition of the continental crust. Earth Planet Sci Lett, 2010, 297: 646-654
[19]  61 Amini M, Eisenhauer A, B?hm F, et al. Calcium isotopes (δ44/40Ca) in MPI-DING reference glasses, USGS rock powders and various rocks: Evidence for Ca isotope fractionation in terrestrial silicates. Geostand Geoanal Res, 2009, 33: 231-247
[20]  62 Schidlowski M. A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature, 1988, 333: 313-318
[21]  63 Cartigny P. Stable isotopes and the origin of diamond. Elements, 2005, 1: 79-84
[22]  64 Walter M J, Kohn S C, Araujo D, et al. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science, 2011, 334: 54-57
[23]  65 Lupton J E. Terrestrial inert gases-Isotope tracer studies and clues to primordial components in the mantle. Ann Rev Earth Planet Sci, 1983, 11: 371-414
[24]  66 Sano Y, Marty B. Origin of carbon in fumarolic gas from island arcs. Chem Geol, 1995, 119: 265-274
[25]  67 Sano Y, Gamo T, Williams S N. Secular variations of helium and carbon isotopes at Galeras volcano, Colombia. J Volcanol Geotherm Res, 1997, 77: 255-265
[26]  68 Hilton D R, Craig H. A helium isotope transect along the Indonesian archipelago. Nature, 1989, 342: 906-908
[27]  69 Milliman J D. Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state. Global Biogeochem Cycles, 1993, 7: 927-957
[28]  70 Chang V T, Williams R J P, Makishima A, et al. Mg and Ca isotope fractionation during CaCO3 biomineralisation. Biochem Biophys Res Commun, 2004, 323: 79-85
[29]  71 Galy A, Yoffe O, Janney P E, et al. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. J Anal At Spectrom, 2003, 18: 1352-1356
[30]  72 Wombacher F, Eisenhauer A, B?hm F, et al. Magnesium stable isotope fractionation in marine biogenic calcite and aragonite. Geochim Cosmochim Acta, 2011, 75: 5797-5818
[31]  73 Li W Y, Teng F Z, Xiao Y L, et al. High-temperature inter-mineral magnesium isotope fractionation in eclogite from the Dabie orogen, China. Earth Planet Sci Lett, 2011, 304: 224-230
[32]  74 Chavagnac V, Jahn B M. Coesite-bearing eclogites from the Bixiling complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications. Chem Geol, 1996, 133: 29-51
[33]  75 Zhang R Y, Liou J G, Cong B L. Talc-, magnesite- and Ti-clinohumite-bearing ultrahigh-pressure meta-mafic and ultramafic complex in the Dabie Mountains, China. J Petrol, 1995, 36: 1011-1037
[34]  76 Yang W, Teng F Z, Zhang H F, et al. Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle. Chem Geol, 2012, doi: 10.1016/j.chemgeo.2012.05.018
[35]  77 Anderson D L. Chemical composition of the mantle. J Geophys Res, 1983, 88(Suppl): B41-B52
[36]  3 Deines P. The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev, 2002, 58: 247-278
[37]  4 Huang S C, Farkas J, Jacobsen S B. Stable calcium isotopic compositions of Hawaiian shield lavas: Evidence for recycling of ancient marine carbonates into the mantle. Geochim Cosmochim Acta, 2011, 75: 4987-4997
[38]  5 Li W Y, Teng F Z, Ke S, et al. Heterogeneous magnesium isotopic composition of the upper continental crust. Geochim Cosmochim Acta, 2010, 74: 6867-6884
[39]  6 Bureau H, Pineau F, Métrich N, et al. A melt and fluid inclusion study of the gas phase at Piton de la Fournaise volcano (Réunion Island). Chem Geol, 1998, 147: 115-130
[40]  7 Cartigny P, Jendrzejewski N, Pineau F, et al. Volatile (C, N, Ar) variability in MORB and the respective roles of mantle source heterogeneity and degassing: The case of the Southwest Indian Ridge. Earth Planet Sci Lett, 2001, 194: 241-257
[41]  8 Saal A E, Hauri E H, Langmuir C H, et al. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature, 2002, 419: 451-455
[42]  9 Aubaud C, Pineau F, Hékinian R, et al. Degassing of CO2 and H2O in submarine lavas from the Society hotspot. Earth Planet Sci Lett, 2005, 235: 511-527
[43]  10 Cartigny P, Pineau F, Aubaud C, et al. Towards a consistent mantle carbon flux estimate: Insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14°N and 34°N). Earth Planet Sci Lett, 2008, 265: 672-685
[44]  11 Shaw A M, Behn M D, Humphris S E, et al. Deep pooling of low degree melts and volatile fluxes at the 85°E segment of the Gakkel Ridge: Evidence from olivine-hosted melt inclusions and glasses. Earth Planet Sci Lett, 2010, 289: 311-322
[45]  12 Dasgupta R, Hirschmann M M. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett, 2010, 298: 1-13
[46]  13 Hirschmann M M, Dasgupta R. The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem Geol, 2009, 262: 4-16
[47]  14 Yoder C F. Astrometric and geodetic properties of Earth and the solar system. In: Ahrens T J, ed. Global Earth Physics: A Handbook of Physical Constants, AGU Reference Shelf. Washington DC: American Geophysical Union, 1995. 1-31
[48]  15 McDonough W F. Compositional Model for the Earth’s Core. In: Holland H D, Turrekian K K, eds. Treatise on Geochemistry. Amsterdam: Elsevier, 2004. 547-568
[49]  16 Shcheka S S, Wiedenbeck M, Frost D J, et al. Carbon solubility in mantle minerals. Earth Planet Sci Lett, 2006, 245: 730-742
[50]  17 Liu L G, Mernagh T P. Phase transitions and Raman spectra of calcite at high pressures and room temperature. Am Mineral, 1990, 75: 801-806
[51]  18 Dalton J A, Presnall D C. Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa. Contrib Mineral Petrol, 1998, 131: 123-135
[52]  19 Hammouda T. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett, 2003, 214: 357-368
[53]  20 Yaxley G M, Brey G P. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contrib Mineral Petrol, 2004, 146: 606-619
[54]  21 Dasgupta R, Hirschmann M M, Dellas N. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Mineral Petrol, 2005, 149: 288-305
[55]  22 Thomsen T B, Schmidt M W. Melting of carbonated pelites at 2.5-5.0 GPa, silicate-carbonatitie liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet Sci Lett, 2008, 267: 17-31
[56]  23 Wallace M E, Green D H. An experimental determination of primary carbonatite magma composition. Nature, 1988, 335: 343-346
[57]  24 Falloon T J, Green D H. The solidus of carbonated, fertile peridotite. Earth Planet Sci Lett, 1989, 94: 364-370
[58]  31 Ghosh S, Ohtani E, Litasov K D, et al. Solidus of carbonated peridotite from 10 to 20 GPa and origin of magnesiocarbonatite melt in the Earth’s deep mantle. Chem Geol, 2009, 262: 17-28
[59]  32 Litasov K D, Ohtani E. Solidus and phase relations of carbonated peridotite in the system CaO-Al2O3-MgO-SiO2-Na2O-CO2 to the lower mantle depths. Phys Earth Planet Interiors, 2009, 177: 46-58
[60]  33 Tsuno K, Dasgupta R. Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5-3.0 GPa and deep cycling of sedimentary carbon. Contrib Mineral Petrol, 2011, 161: 743-763
[61]  34 Woodland A B, Koch M. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, South Africa. Earth Planet Sci Lett, 2003, 214: 295-310
[62]  35 Frost D J, McCammon C A. The redox state of the Earth’s mantle. Annu Rev Earth Planet Sci. 2008, 36: 389-420
[63]  36 Stagno V, Frost D J. Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth Planet Sci Lett, 2010, 300: 72-84
[64]  37 Rohrbach A, Schmidt M W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling. Nature, 2011, 472: 209-212
[65]  38 尹庆平. 金刚石的起源与合成. 珠宝科技, 2004, 16: 44-50
[66]  78 Eisenhauer A, N?gler T F, Stille P, et al. Proposal for an international agreement on Ca notation as a result of the discussion from the workshop on stable isotope measurements in Davos (Goldschmidt 2002) and Nice (EGS-AGU-EUG 2003). Geostand Geoanal Res, 2004, 28: 149-151
[67]  79 Farkas J, Buhl D, Blenkinsop J, et al. Evolution of the oceanic calcium cycle during the late Mesozoic: Evidence from δ44/40Ca of marine skeletal carbonates. Earth Planet Sci Lett, 2007, 253: 96-111
[68]  80 Holmden C. Ca isotope study of Ordovician dolomite, limestone, and anhydrite in the Williston Basin: Implications for subsurface dolomitisation and local Ca cycling. Chem Geol, 2009, 268: 180-188
[69]  81 DePaolo D J. Calcium isotopic variations produced by biological, kinetic, radiogenic and nucleosynthetic processes. Rev Mineral Geochem, 2004, 55: 255-288
[70]  82 Huang S C, Farkas J, Jacobsen S B. Calcium isotopic fractionation between clinopyroxene and orthopyroxene from mantle peridotites. Earth Planet Sci Lett, 2010, 292: 337-344
[71]  83 Simon J I, DePaolo D J. Stable calcium isotopic composition of meteorites and rocky planets. Earth Planet Sci Lett, 2010, 289: 457-466
[72]  84 De La Rocha C L, DePaolo D J. Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science, 2000, 289: 1176-1178
[73]  85 Fantle M S, DePaolo D J. Variations in the marine Ca cycle over the past 20 million years. Earth Planet Sci Lett, 2005, 237: 102-117
[74]  86 Gussone N, B?hm F, Eisenhauer A, et al. Calcium isotope fractionation in calcite and aragonite. Geochim Cosmochim Acta, 2005, 69: 4485-4494
[75]  1 汪品先. 我国的地球系统科学研究向何处去. 地球科学进展, 2003, 18: 837-851
[76]  2 曲建升, 孙成权, 张志强, 等. 全球变化科学中的碳循环研究进展与趋向. 地球科学进展, 2003, 18: 980-987
[77]  25 Falloon T J, Green D H. Solidus of carbonated fertile peridotite under fluid-saturated conditions. Geology, 1990, 18: 195-199
[78]  26 Dasgupta R, Hirschmann M M, Withers A C. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 2004, 227: 73-85
[79]  27 Dasgupta R, Hirschmann M M. Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature, 2006, 440: 659-662
[80]  28 Dasgupta R, Hirschmann M M. Effect of variable carbonate concentration on the solidus of mantle peridotite. Am Mineral, 2007, 92: 370-379
[81]  29 Dasgupta R, Hirschmann M M. A modified iterative sandwich method for determination of near-solidus partial melt compositions. II. Application to determination of near-solidus melt compositions of carbonated peridotite. Contrib Mineral Petrol, 2007, 154: 647-661
[82]  30 Brey G P, Bulatov V K, Girnis A V, et al. Experimental melting of carbonated peridotite at 6-10 GPa. J Petrol, 2008, 49: 797-821
[83]  39 Lowenstern J B. Carbon dioxide in magmas and implications for hydrothermal systems. Miner Depos, 2001, 36: 490-502
[84]  40 Dixon J E. Degassing of alkalic basalts. Am Mineral, 1997, 82: 368-378
[85]  41 Lesne P, Scaillet B, Pichavant M, et al. The carbon dioxide solubility in alkali basalts: An experimental study. Contrib Mineral Petrol, 2011, 162: 153-168
[86]  42 Rea D K, Ruff L J. Composition and mass flux of sediment entering the world’s subduction zones: Implications for global sediment budgets, great earthquakes, and volcanism. Earth Planet Sci Lett, 1996, 140: 1-12

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133