44 Johnston F K B, Turchyn A V, Edmonds M. Decarbonation efficiency in subduction zones: Implications for warm Cretaceous climates. Earth Planet Sci Lett, 2011, 303: 143-152
[3]
45 Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol, 1998, 145: 325-394
[4]
46 Carlson R L, Herrick C N. Densities and porosities in the oceanic crust and their variations with depth and age. J Geophys Res, 1990, 95: 9153-9170
[5]
47 Reymer A, Schubert G. Phanerozoic addition rates to the continental crust and crustal growth. Tectonics, 1984, 3: 63-77
[6]
48 Marty B, Tolstikhin I N. CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem Geol, 1998, 145: 233-248
[7]
49 Wang C Y. Density and constitution of the mantle. J Geophys Res, 1970, 75: 3264-3284
[8]
50 Hayes J M, Waldbauer J R. The carbon cycle and associated redox processes through time. Phil Trans R Soc B, 2006, 361: 931-950
[9]
51 Hilton D R, Fischer T P, Marty B. Noble gases and volatile recycling at subduction zones. Rev Mineral Geochem, 2002, 47: 319-370
[10]
52 Sano Y, Williams S N. Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys Res Lett, 1996, 23: 2749-2752
[11]
53 Ingebritsen S E, Manning C E. Diffuse fluid flux through orogenic belts: Implications for the world ocean. Proc Nat Acad Sci USA, 2002, 99: 9113-9116
[12]
54 Blundy J, Cashman K V, Rust A, et al. A case for CO2-rich arc magmas. Earth Planet Sci Lett, 2010, 290: 289-301
[13]
55 Bulanova G P, Walter M J, Smith C B, et al. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib Mineral Petrol, 2010, 160: 489-510
[14]
56 Muehlenbachs K, Byerly G. 18O-Enrichment of silicic magmas caused by crystal fractionation at the Galapagos Spreading Center. Contrib Mineral Petrol, 1982, 79: 76-79
[15]
57 Teng F Z, Dauphas N, Helz R T. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake. Science, 2008, 320: 1620-1622
[16]
58 Schuessler J A, Schoenberg R, Sigmarsson O. Iron and lithium isotope systematics of the Hekla volcano, Iceland—Evidence for Fe isotope fractionation during magma differentiation. Chem Geol, 2009, 258: 78-91
[17]
59 Teng F Z, Wadhwa M, Helz R T. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle. Earth Planet Sci Lett, 2007, 261: 84-92
[18]
60 Liu S A, Teng F Z, He Y S, et al. Investigation of magnesium isotope fractionation during granite differentiation: Implication for Mg isotopic composition of the continental crust. Earth Planet Sci Lett, 2010, 297: 646-654
[19]
61 Amini M, Eisenhauer A, B?hm F, et al. Calcium isotopes (δ44/40Ca) in MPI-DING reference glasses, USGS rock powders and various rocks: Evidence for Ca isotope fractionation in terrestrial silicates. Geostand Geoanal Res, 2009, 33: 231-247
[20]
62 Schidlowski M. A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature, 1988, 333: 313-318
[21]
63 Cartigny P. Stable isotopes and the origin of diamond. Elements, 2005, 1: 79-84
[22]
64 Walter M J, Kohn S C, Araujo D, et al. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science, 2011, 334: 54-57
[23]
65 Lupton J E. Terrestrial inert gases-Isotope tracer studies and clues to primordial components in the mantle. Ann Rev Earth Planet Sci, 1983, 11: 371-414
[24]
66 Sano Y, Marty B. Origin of carbon in fumarolic gas from island arcs. Chem Geol, 1995, 119: 265-274
[25]
67 Sano Y, Gamo T, Williams S N. Secular variations of helium and carbon isotopes at Galeras volcano, Colombia. J Volcanol Geotherm Res, 1997, 77: 255-265
[26]
68 Hilton D R, Craig H. A helium isotope transect along the Indonesian archipelago. Nature, 1989, 342: 906-908
[27]
69 Milliman J D. Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state. Global Biogeochem Cycles, 1993, 7: 927-957
[28]
70 Chang V T, Williams R J P, Makishima A, et al. Mg and Ca isotope fractionation during CaCO3 biomineralisation. Biochem Biophys Res Commun, 2004, 323: 79-85
[29]
71 Galy A, Yoffe O, Janney P E, et al. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. J Anal At Spectrom, 2003, 18: 1352-1356
[30]
72 Wombacher F, Eisenhauer A, B?hm F, et al. Magnesium stable isotope fractionation in marine biogenic calcite and aragonite. Geochim Cosmochim Acta, 2011, 75: 5797-5818
[31]
73 Li W Y, Teng F Z, Xiao Y L, et al. High-temperature inter-mineral magnesium isotope fractionation in eclogite from the Dabie orogen, China. Earth Planet Sci Lett, 2011, 304: 224-230
[32]
74 Chavagnac V, Jahn B M. Coesite-bearing eclogites from the Bixiling complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications. Chem Geol, 1996, 133: 29-51
[33]
75 Zhang R Y, Liou J G, Cong B L. Talc-, magnesite- and Ti-clinohumite-bearing ultrahigh-pressure meta-mafic and ultramafic complex in the Dabie Mountains, China. J Petrol, 1995, 36: 1011-1037
[34]
76 Yang W, Teng F Z, Zhang H F, et al. Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle. Chem Geol, 2012, doi: 10.1016/j.chemgeo.2012.05.018
[35]
77 Anderson D L. Chemical composition of the mantle. J Geophys Res, 1983, 88(Suppl): B41-B52
[36]
3 Deines P. The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev, 2002, 58: 247-278
[37]
4 Huang S C, Farkas J, Jacobsen S B. Stable calcium isotopic compositions of Hawaiian shield lavas: Evidence for recycling of ancient marine carbonates into the mantle. Geochim Cosmochim Acta, 2011, 75: 4987-4997
[38]
5 Li W Y, Teng F Z, Ke S, et al. Heterogeneous magnesium isotopic composition of the upper continental crust. Geochim Cosmochim Acta, 2010, 74: 6867-6884
[39]
6 Bureau H, Pineau F, Métrich N, et al. A melt and fluid inclusion study of the gas phase at Piton de la Fournaise volcano (Réunion Island). Chem Geol, 1998, 147: 115-130
[40]
7 Cartigny P, Jendrzejewski N, Pineau F, et al. Volatile (C, N, Ar) variability in MORB and the respective roles of mantle source heterogeneity and degassing: The case of the Southwest Indian Ridge. Earth Planet Sci Lett, 2001, 194: 241-257
[41]
8 Saal A E, Hauri E H, Langmuir C H, et al. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature, 2002, 419: 451-455
[42]
9 Aubaud C, Pineau F, Hékinian R, et al. Degassing of CO2 and H2O in submarine lavas from the Society hotspot. Earth Planet Sci Lett, 2005, 235: 511-527
[43]
10 Cartigny P, Pineau F, Aubaud C, et al. Towards a consistent mantle carbon flux estimate: Insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14°N and 34°N). Earth Planet Sci Lett, 2008, 265: 672-685
[44]
11 Shaw A M, Behn M D, Humphris S E, et al. Deep pooling of low degree melts and volatile fluxes at the 85°E segment of the Gakkel Ridge: Evidence from olivine-hosted melt inclusions and glasses. Earth Planet Sci Lett, 2010, 289: 311-322
[45]
12 Dasgupta R, Hirschmann M M. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett, 2010, 298: 1-13
[46]
13 Hirschmann M M, Dasgupta R. The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem Geol, 2009, 262: 4-16
[47]
14 Yoder C F. Astrometric and geodetic properties of Earth and the solar system. In: Ahrens T J, ed. Global Earth Physics: A Handbook of Physical Constants, AGU Reference Shelf. Washington DC: American Geophysical Union, 1995. 1-31
[48]
15 McDonough W F. Compositional Model for the Earth’s Core. In: Holland H D, Turrekian K K, eds. Treatise on Geochemistry. Amsterdam: Elsevier, 2004. 547-568
[49]
16 Shcheka S S, Wiedenbeck M, Frost D J, et al. Carbon solubility in mantle minerals. Earth Planet Sci Lett, 2006, 245: 730-742
[50]
17 Liu L G, Mernagh T P. Phase transitions and Raman spectra of calcite at high pressures and room temperature. Am Mineral, 1990, 75: 801-806
[51]
18 Dalton J A, Presnall D C. Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa. Contrib Mineral Petrol, 1998, 131: 123-135
[52]
19 Hammouda T. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett, 2003, 214: 357-368
[53]
20 Yaxley G M, Brey G P. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contrib Mineral Petrol, 2004, 146: 606-619
[54]
21 Dasgupta R, Hirschmann M M, Dellas N. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Mineral Petrol, 2005, 149: 288-305
[55]
22 Thomsen T B, Schmidt M W. Melting of carbonated pelites at 2.5-5.0 GPa, silicate-carbonatitie liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet Sci Lett, 2008, 267: 17-31
[56]
23 Wallace M E, Green D H. An experimental determination of primary carbonatite magma composition. Nature, 1988, 335: 343-346
[57]
24 Falloon T J, Green D H. The solidus of carbonated, fertile peridotite. Earth Planet Sci Lett, 1989, 94: 364-370
[58]
31 Ghosh S, Ohtani E, Litasov K D, et al. Solidus of carbonated peridotite from 10 to 20 GPa and origin of magnesiocarbonatite melt in the Earth’s deep mantle. Chem Geol, 2009, 262: 17-28
[59]
32 Litasov K D, Ohtani E. Solidus and phase relations of carbonated peridotite in the system CaO-Al2O3-MgO-SiO2-Na2O-CO2 to the lower mantle depths. Phys Earth Planet Interiors, 2009, 177: 46-58
[60]
33 Tsuno K, Dasgupta R. Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5-3.0 GPa and deep cycling of sedimentary carbon. Contrib Mineral Petrol, 2011, 161: 743-763
[61]
34 Woodland A B, Koch M. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, South Africa. Earth Planet Sci Lett, 2003, 214: 295-310
[62]
35 Frost D J, McCammon C A. The redox state of the Earth’s mantle. Annu Rev Earth Planet Sci. 2008, 36: 389-420
[63]
36 Stagno V, Frost D J. Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth Planet Sci Lett, 2010, 300: 72-84
[64]
37 Rohrbach A, Schmidt M W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling. Nature, 2011, 472: 209-212
[65]
38 尹庆平. 金刚石的起源与合成. 珠宝科技, 2004, 16: 44-50
[66]
78 Eisenhauer A, N?gler T F, Stille P, et al. Proposal for an international agreement on Ca notation as a result of the discussion from the workshop on stable isotope measurements in Davos (Goldschmidt 2002) and Nice (EGS-AGU-EUG 2003). Geostand Geoanal Res, 2004, 28: 149-151
[67]
79 Farkas J, Buhl D, Blenkinsop J, et al. Evolution of the oceanic calcium cycle during the late Mesozoic: Evidence from δ44/40Ca of marine skeletal carbonates. Earth Planet Sci Lett, 2007, 253: 96-111
[68]
80 Holmden C. Ca isotope study of Ordovician dolomite, limestone, and anhydrite in the Williston Basin: Implications for subsurface dolomitisation and local Ca cycling. Chem Geol, 2009, 268: 180-188
[69]
81 DePaolo D J. Calcium isotopic variations produced by biological, kinetic, radiogenic and nucleosynthetic processes. Rev Mineral Geochem, 2004, 55: 255-288
[70]
82 Huang S C, Farkas J, Jacobsen S B. Calcium isotopic fractionation between clinopyroxene and orthopyroxene from mantle peridotites. Earth Planet Sci Lett, 2010, 292: 337-344
[71]
83 Simon J I, DePaolo D J. Stable calcium isotopic composition of meteorites and rocky planets. Earth Planet Sci Lett, 2010, 289: 457-466
[72]
84 De La Rocha C L, DePaolo D J. Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science, 2000, 289: 1176-1178
[73]
85 Fantle M S, DePaolo D J. Variations in the marine Ca cycle over the past 20 million years. Earth Planet Sci Lett, 2005, 237: 102-117
[74]
86 Gussone N, B?hm F, Eisenhauer A, et al. Calcium isotope fractionation in calcite and aragonite. Geochim Cosmochim Acta, 2005, 69: 4485-4494
25 Falloon T J, Green D H. Solidus of carbonated fertile peridotite under fluid-saturated conditions. Geology, 1990, 18: 195-199
[78]
26 Dasgupta R, Hirschmann M M, Withers A C. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 2004, 227: 73-85
[79]
27 Dasgupta R, Hirschmann M M. Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature, 2006, 440: 659-662
[80]
28 Dasgupta R, Hirschmann M M. Effect of variable carbonate concentration on the solidus of mantle peridotite. Am Mineral, 2007, 92: 370-379
[81]
29 Dasgupta R, Hirschmann M M. A modified iterative sandwich method for determination of near-solidus partial melt compositions. II. Application to determination of near-solidus melt compositions of carbonated peridotite. Contrib Mineral Petrol, 2007, 154: 647-661
[82]
30 Brey G P, Bulatov V K, Girnis A V, et al. Experimental melting of carbonated peridotite at 6-10 GPa. J Petrol, 2008, 49: 797-821
[83]
39 Lowenstern J B. Carbon dioxide in magmas and implications for hydrothermal systems. Miner Depos, 2001, 36: 490-502
[84]
40 Dixon J E. Degassing of alkalic basalts. Am Mineral, 1997, 82: 368-378
[85]
41 Lesne P, Scaillet B, Pichavant M, et al. The carbon dioxide solubility in alkali basalts: An experimental study. Contrib Mineral Petrol, 2011, 162: 153-168
[86]
42 Rea D K, Ruff L J. Composition and mass flux of sediment entering the world’s subduction zones: Implications for global sediment budgets, great earthquakes, and volcanism. Earth Planet Sci Lett, 1996, 140: 1-12