Despite the introduction of therapeutic hypothermia, neonatal hypoxic ischemic (HI) brain injury remains a common cause of developmental disability. Development of rational adjuvant therapies to hypothermia requires understanding of the pathways of cell death and survival modulated by HI. The conceptualization of the apoptosis-necrosis “continuum” in neonatal brain injury predicts mechanistic interactions between cell death and hydrid forms of cell death such as programmed or regulated necrosis. Many of the components of the signaling pathway regulating programmed necrosis have been studied previously in models of neonatal HI. In some of these investigations, they participate as part of the apoptotic pathways demonstrating clear overlap of programmed death pathways. Receptor interacting protein (RIP)-1 is at the crossroads between types of cellular death and survival and RIP-1 kinase activity triggers formation of the necrosome (in complex with RIP-3) leading to programmed necrosis. Neuroprotection afforded by the blockade of RIP-1 kinase following neonatal HI suggests a role for programmed necrosis in the HI injury to the developing brain. Here, we briefly review the state of the knowledge about the mechanisms behind programmed necrosis in neonatal brain injury recognizing that a significant proportion of these data derive from experiments in cultured cell and some from in vivo adult animal models. There are still more questions than answers, yet the fascinating new perspectives provided by the understanding of programmed necrosis in the developing brain may lay the foundation for new therapies for neonatal HI. 1. Introduction Neonatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of mortality and morbidity in the pediatric population [1]. The therapeutic options for neonatal HIE are limited in part because the mechanisms of cellular degeneration in the immature brain are not fully understood. These mechanisms resulting from ischemia-reperfusion, oxidative stress, excitotoxicity and inflammation among others, activate or coactivate multiple pathways of cell death. Although, necrosis was initially described as the most prominent form of cellular degeneration following neonatal hypoxia-ischemia (HI) [2, 3], research emphasis switched to the study of apoptosis (programmed cell death type I) and autophagy largely due to advances in cell biology and to experimental animal studies on the molecular dissection of pathways for apoptotic and autophagocytic initiation and execution. The significance of necrosis in neonatal HI has been difficult to
References
[1]
M. Derrick, A. Drobyshevsky, X. Ji, and S. Tan, “A model of cerebral palsy from fetal hypoxia-ischemia,” Stroke, vol. 38, supplement 2, pp. 731–735, 2007.
[2]
W. G. Myers, “The first radioindicator study in the life sciences with a man-made radionuclide: "Radioactive indicators in the study of phosphorus metabolism in rats, by O. Chievitz and G. Hevesy, reprinted from Nature 136: 754-755, Nov. 9, 1935,” Journal of Nuclear Medicine, vol. 16, no. 12, pp. 1106–1108, 1975.
[3]
J. E. Rice III, R. C. Vannucci, and J. B. Brierley, “The influence of immaturity on hypoxic-ischemic brain damage in the rat,” Annals of Neurology, vol. 9, no. 2, pp. 131–141, 1981.
[4]
F. J. Northington, D. M. Ferriero, and L. J. Martin, “Neurodegeneration in the thalamus following neonatal hypoxia-ischemia is programmed cell death,” Developmental Neuroscience, vol. 23, no. 3, pp. 186–191, 2001.
[5]
J. Towfighi, N. Zec, J. Yager, C. Housman, and R. C. Vannucci, “Temporal evolution of neuropathologic changes in an immature rat model of cerebral hypoxia: a light microscopic study,” Acta Neuropathologica, vol. 90, no. 4, pp. 375–386, 1995.
[6]
F. J. Northington, M. E. Zelaya, D. P. O'Riordan et al., “Failure to complete apoptosis following neonatal hypoxia-ischemia manifests as "continuum" phenotype of cell death and occurs with multiple manifestations of mitochondrial dysfunction in rodent forebrain,” Neuroscience, vol. 149, no. 4, pp. 822–833, 2007.
[7]
F. J. Northington, R. Chavez-Valdez, E. M. Graham, S. Razdan, E. B. Gauda, and L. J. Martin, “Necrostatin decreases oxidative damage, inflammation, and injury after neonatal HI,” Journal of Cerebral Blood Flow and Metabolism, vol. 31, no. 1, pp. 178–189, 2011.
[8]
F. J. Northington, R. Chavez-Valdez, and L. J. Martin, “Neuronal cell death in neonatal hypoxia-ischemia,” Annals of Neurology, vol. 69, no. 5, pp. 743–758, 2011.
[9]
F. K. M. Chan, J. Shisler, J. G. Bixby et al., “A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses,” Journal of Biological Chemistry, vol. 278, no. 51, pp. 51613–51621, 2003.
[10]
N. Holler, R. Zaru, O. Micheau et al., “Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule,” Nature Immunology, vol. 1, no. 6, pp. 489–495, 2000.
[11]
D. Vercammen, R. Beyaert, G. Denecker et al., “Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor,” Journal of Experimental Medicine, vol. 187, no. 9, pp. 1477–1485, 1998.
[12]
T. V. Berghe, N. Vanlangenakker, E. Parthoens et al., “Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features,” Cell Death and Differentiation, vol. 17, no. 6, pp. 922–930, 2010.
[13]
Z. Dunai, P. I. Bauer, and R. Mihalik, “Necroptosis: biochemical, physiological and pathological aspects,” Pathology and Oncology Research, vol. 17, no. 4, pp. 791–800, 2011.
[14]
G. Kung, K. Konstantinidis, and R. N. Kitsis, “Programmed necrosis, not apoptosis, in the heart,” Circulation Research, vol. 108, no. 8, pp. 1017–1036, 2011.
[15]
M. E. Peter, “Programmed cell death: apoptosis meets necrosis,” Nature, vol. 471, no. 7338, pp. 310–312, 2011.
[16]
P. Vandenabeele, L. Galluzzi, T. Vanden Berghe, and G. Kroemer, “Molecular mechanisms of necroptosis: an ordered cellular explosion,” Nature Reviews Molecular Cell Biology, vol. 11, no. 10, pp. 700–714, 2010.
[17]
N. Vanlangenakker, T. Vanden Berghe, and P. Vandenabeele, “Many stimuli pull the necrotic trigger, an overview,” Cell Death and Differentiation, vol. 19, no. 1, pp. 75–86, 2012.
[18]
Z. You, S. I. Savitz, J. Yang et al., “Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 9, pp. 1564–1573, 2008.
[19]
A. Degterev, J. Hitomi, M. Germscheid et al., “Identification of RIP1 kinase as a specific cellular target of necrostatins,” Nature Chemical Biology, vol. 4, no. 5, pp. 313–321, 2008.
[20]
V. Temkin, Q. Huang, H. Liu, H. Osada, and R. M. Pope, “Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis,” Molecular and Cellular Biology, vol. 26, no. 6, pp. 2215–2225, 2006.
[21]
A. Degterev, Z. Huang, M. Boyce et al., “Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury,” Nature Chemical Biology, vol. 1, no. 2, pp. 112–119, 2005.
[22]
S. Y. Lim, S. M. Davidson, M. M. Mocanu, D. M. Yellon, and C. C. T. Smith, “The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore,” Cardiovascular Drugs and Therapy, vol. 21, no. 6, pp. 467–469, 2007.
[23]
H. M. Shen and S. Pervaiz, “TNF receptor superfamily-induced cell death: redox-dependent execution,” The FASEB Journal, vol. 20, no. 10, pp. 1589–1598, 2006.
[24]
K. Motani, H. Kushiyama, R. Imamura, T. Kinoshita, T. Nishiuchi, and T. Suda, “Caspase-1 protein induces apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)-mediated necrosis independently of its catalytic activity,” Journal of Biological Chemistry, vol. 286, no. 39, pp. 33963–33972, 2011.
[25]
H. C. Tu, D. Ren, G. X. Wang et al., “The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 4, pp. 1093–1098, 2009.
[26]
H. Hagberg, M. A. Wilson, H. Matsushita et al., “PARP-1 gene disruption in mice preferentially protects males from perinatal brain injury,” Journal of Neurochemistry, vol. 90, no. 5, pp. 1068–1075, 2004.
[27]
M. Los, M. Mozoluk, D. Ferrari et al., “Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling,” Molecular Biology of the Cell, vol. 13, no. 3, pp. 978–988, 2002.
[28]
R. S. Moubarak, V. J. Yuste, C. Artus et al., “Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and bax is essential in apoptosis-inducing factor-mediated programmed necrosis,” Molecular and Cellular Biology, vol. 27, no. 13, pp. 4844–4862, 2007.
[29]
Y. Xu, S. Huang, Z. G. Liu, and J. Han, “Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation,” Journal of Biological Chemistry, vol. 281, no. 13, pp. 8788–8795, 2006.
[30]
S. W. Yu, H. Wang, M. F. Poitras et al., “Mediation of poty(ADP-ribose) polymerase-1—dependent cell death by apoptosis-inducing factor,” Science, vol. 297, no. 5579, pp. 259–263, 2002.
[31]
Y. Eguchi, S. Shimizu, and Y. Tsujimoto, “Intracellular ATP levels determine cell death fate by apoptosis or necrosis,” Cancer Research, vol. 57, no. 10, pp. 1835–1840, 1997.
[32]
O. Micheau and J. Tschopp, “Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes,” Cell, vol. 114, no. 2, pp. 181–190, 2003.
[33]
M. Leist, B. Single, H. Naumann et al., “Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis,” Experimental Cell Research, vol. 249, no. 2, pp. 396–403, 1999.
[34]
M. Leist, B. Single, A. F. Castoldi, S. Kühnle, and P. Nicotera, “Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis,” Journal of Experimental Medicine, vol. 185, no. 8, pp. 1481–1486, 1997.
[35]
M. Leist and M. J??ttel?, “Four deaths and a funeral: from caspases to alternative mechanisms,” Nature Reviews Molecular Cell Biology, vol. 2, no. 8, pp. 589–598, 2001.
[36]
K. Blomgren, M. Leist, and L. Groc, “Pathological apoptosis in the developing brain,” Apoptosis, vol. 12, no. 5, pp. 993–1010, 2007.
[37]
Y.-C. Ye, L. Yu, H.-J. Wang, S.-I. Tashiro, S. Onodera, and T. Ikejima, “TNFα-induced necroptosis and autophagy via supression of the p38-NF-κB survival pathway in L929 cells,” Journal of Pharmacological Sciences, vol. 117, no. 3, pp. 160–169, 2011.
[38]
H. H?cker and M. Karin, “Regulation and function of IKK and IKK-related kinases,” Science's STKE, vol. 2006, no. 357, p. re13, 2006.
[39]
Q. L. Deveraux, N. Roy, H. R. Stennicke et al., “IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases,” EMBO Journal, vol. 17, no. 8, pp. 2215–2223, 1998.
[40]
M. J. M. Bertrand, S. Milutinovic, K. M. Dickson et al., “cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination,” Molecular Cell, vol. 30, no. 6, pp. 689–700, 2008.
[41]
C. H. Nijboer, M. A. van der Kooij, F. van Bel, F. Ohl, C. J. Heijnen, and A. Kavelaars, “Inhibition of the JNK/AP-1 pathway reduces neuronal death and improves behavioral outcome after neonatal hypoxic-ischemic brain injury,” Brain, Behavior, and Immunity, vol. 24, no. 5, pp. 812–821, 2010.
[42]
N. Vanlangenakker, M. J. M. Bertrand, P. Bogaert, P. Vandenabeele, and T. Vanden Berghe, “TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex i and II members,” Cell Death and Disease, vol. 2, no. 11, article e230, 2011.
[43]
J. Hitomi, D. E. Christofferson, A. Ng et al., “Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway,” Cell, vol. 135, no. 7, pp. 1311–1323, 2008.
[44]
M. A. O'Donnell, E. Perez-Jimenez, A. Oberst et al., “Caspase 8 inhibits programmed necrosis by processing CYLD,” Nature Cell Biology, vol. 13, no. 12, pp. 1437–1442, 2011.
[45]
Y. S. Kim, M. J. Morgan, S. Choksi, and Z. G. Liu, “TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death,” Molecular Cell, vol. 26, no. 5, pp. 675–687, 2007.
[46]
C. Zhu, L. Qiu, X. Wang et al., “Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain,” Journal of Neurochemistry, vol. 86, no. 2, pp. 306–317, 2003.
[47]
C. Zhu, X. Wang, L. Qiu, C. Peeters-Scholte, H. Hagberg, and K. Blomgren, “Nitrosylation precedes caspase-3 activation and translocation of apoptosis-inducing factor in neonatal rat cerebral hypoxia-ischaemia,” Journal of Neurochemistry, vol. 90, no. 2, pp. 462–471, 2004.
[48]
Y. Matsumori, S. M. Hong, K. Aoyama et al., “Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury,” Journal of Cerebral Blood Flow and Metabolism, vol. 25, no. 7, pp. 899–910, 2005.
[49]
W. Yin, G. Cao, M. J. Johnnides et al., “TAT-mediated delivery of Bcl-xL protein is neuroprotective against neonatal hypoxic-ischemic brain injury via inhibition of caspases and AIF,” Neurobiology of Disease, vol. 21, no. 2, pp. 358–371, 2006.
[50]
C. Zhu, F. Xu, X. Wang et al., “Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia,” Journal of Neurochemistry, vol. 96, no. 4, pp. 1016–1027, 2006.
[51]
R. Askalan, C. Wang, H. Shi, E. Armstrong, and J. Y. Yager, “The effect of postischemic hypothermia on apoptotic cell death in the neonatal rat brain,” Developmental Neuroscience, vol. 33, no. 3-4, pp. 320–329, 2011.
[52]
K. Blomgren, C. Zhu, X. Wang et al., “Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of "pathological apoptosis"?” Journal of Biological Chemistry, vol. 276, no. 13, pp. 10191–10198, 2001.
[53]
M. Kawamura, W. Nakajima, A. Ishida, A. Ohmura, S. Miura, and G. Takada, “Calpain inhibitor MDL 28170 protects hypoxic-ischemic brain injury in neonatal rats by inhibition of both apoptosis and necrosis,” Brain Research, vol. 1037, no. 1-2, pp. 59–69, 2005.
[54]
A. Ohmura, W. Nakajima, A. Ishida et al., “Prolonged hypothermia protects neonatal rat brain against hypoxic-ischemia by reducing both apoptosis and necrosis,” Brain and Development, vol. 27, no. 7, pp. 517–526, 2005.
[55]
T. West, M. Atzeva, and D. M. Holtzman, “Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury,” Developmental Neuroscience, vol. 29, no. 4-5, pp. 363–372, 2007.
[56]
V. Ginet, J. Puyal, G. Magnin, P. G. H. Clarke, and A. C. Truttmann, “Limited role of the c-Jun N-terminal kinase pathway in a neonatal rat model of cerebral hypoxia-ischemia,” Journal of Neurochemistry, vol. 108, no. 3, pp. 552–562, 2009.
[57]
M. Zhou, W. Xu, G. Liao, X. Bi, and M. Baudry, “Neuroprotection against neonatal hypoxia/ischemia-induced cerebral cell death by prevention of calpain-mediated mGluR1α truncation,” Experimental Neurology, vol. 218, no. 1, pp. 75–82, 2009.
[58]
C. Zhu, U. Hallin, Y. Ozaki et al., “Nuclear translocation and calpain-dependent reduction of Bcl-2 after neonatal cerebral hypoxia-ischemia,” Brain, Behavior, and Immunity, vol. 24, no. 5, pp. 822–830, 2010.
[59]
H. Shen, X. Hu, C. Liu et al., “Ethyl pyruvate protects against hypoxic-ischemic brain injury via anti-cell death and anti-inflammatory mechanisms,” Neurobiology of Disease, vol. 37, no. 3, pp. 711–722, 2010.
[60]
S. Carloni, A. Carnevali, M. Cimino, and W. Balduini, “Extended role of necrotic cell death after hypoxia-ischemia-induced neurodegeneration in the neonatal rat,” Neurobiology of Disease, vol. 27, no. 3, pp. 354–361, 2007.
[61]
K. S. E. Payton, R. A. Sheldon, D. W. Mack et al., “Antioxidant status alters levels of fas-associated death domain-like IL-1B-converting enzyme inhibitory protein following neonatal hypoxia-ischemia,” Developmental Neuroscience, vol. 29, no. 4-5, pp. 403–411, 2007.
[62]
F. J. Northington, D. M. Ferriero, D. L. Flock, and L. J. Martin, “Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis,” Journal of Neuroscience, vol. 21, no. 6, pp. 1931–1938, 2001.
[63]
E. M. Graham, R. A. Sheldon, D. L. Flock et al., “Neonatal mice lacking functional Fas death receptors are resistant to hypoxic-ischemic brain injury,” Neurobiology of Disease, vol. 17, no. 1, pp. 89–98, 2004.
[64]
Y. Matsumori, F. J. Northington, S. M. Hong et al., “Reduction of caspase-8 and -9 cleavage is associated with increased c-FLIP and increased binding of Apaf-1 and Hsp70 after neonatal hypoxic/ischemic injury in mice overexpressing Hsp70,” Stroke, vol. 37, no. 2, pp. 507–512, 2006.
[65]
G. Pirianov, K. G. Brywe, C. Mallard et al., “Deletion of the c-Jun N-terminal kinase 3 gene protects neonatal mice against cerebral hypoxic-ischaemic injury,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 5, pp. 1022–1032, 2007.
[66]
C. H. Nijboer, C. J. Heijnen, M. A. Van Der Kooij et al., “Targeting the p53 pathway to protect the neonatal ischemic brain,” Annals of Neurology, vol. 70, no. 2, pp. 255–264, 2011.
[67]
S. Carloni, E. Mazzoni, M. Cimino et al., “Simvastatin reduces caspase-3 activation and inflammatory markers induced by hypoxia-ischemia in the newborn rat,” Neurobiology of Disease, vol. 21, no. 1, pp. 119–126, 2006.
[68]
S. S. Martin, J. R. Perez-Polo, K. M. Noppens, and M. R. Grafe, “Biphasic changes in the levels of poly(ADP-ribose) polymerase-1 and caspase 3 in the immature brain following hypoxia-ischemia,” International Journal of Developmental Neuroscience, vol. 23, no. 8, pp. 673–686, 2005.
[69]
C. H. Nijboer, C. J. Heijnen, F. Groenendaal, F. Van Bel, and A. Kavelaars, “Alternate pathways preserve tumor necrosis factor-α production after nuclear factor-κB inhibition in neonatal cerebral hypoxia-ischemia,” Stroke, vol. 40, no. 10, pp. 3362–3368, 2009.
[70]
D. E. Christofferson and J. Yuan, “Necroptosis as an alternative form of programmed cell death,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 263–268, 2010.
[71]
C. K. Ea, L. Deng, Z. P. Xia, G. Pineda, and Z. J. Chen, “Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO,” Molecular Cell, vol. 22, no. 2, pp. 245–257, 2006.
[72]
P. Vandenabeele, T. Vanden Berghe, and N. Festjens, “Caspase inhibitors promote alternative cell death pathways,” Science's STKE, vol. 2006, no. 358, p. pe44, 2006.
[73]
L. Wang, F. Du, and X. Wang, “TNF-α induces two distinct caspase-8 activation pathways,” Cell, vol. 133, no. 4, pp. 693–703, 2008.
[74]
S. Feng, Y. Yang, Y. Mei et al., “Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain,” Cellular Signalling, vol. 19, no. 10, pp. 2056–2067, 2007.
[75]
W. Declercq, T. Vanden Berghe, and P. Vandenabeele, “RIP kinases at the crossroads of cell death and survival,” Cell, vol. 138, no. 2, pp. 229–232, 2009.
[76]
X. Sun, J. Yin, M. A. Starovasnik, W. J. Fairbrother, and V. M. Dixit, “Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3,” Journal of Biological Chemistry, vol. 277, no. 11, pp. 9505–9511, 2002.
[77]
J. Thakar, K. Schleinkofer, C. Borner, and T. Dandekar, “RIP death domain structural interactions implicated in TNF-mediated proliferation and survival,” Proteins, vol. 63, no. 3, pp. 413–423, 2006.
[78]
Y. Cho, S. Challa, D. Moquin et al., “Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation,” Cell, vol. 137, no. 6, pp. 1112–1123, 2009.
[79]
M. Bonnet, D. Preukschat, P. -S. Welz et al., “The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation,” Immunity, vol. 35, no. 4, pp. 572–582, 2011.
[80]
J. V. Lu, B. M. Weist, B. J. Van Raam et al., “Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 37, pp. 15312–15317, 2011.
[81]
S. Kreuz, D. Siegmund, J. J. Rumpf et al., “NFκB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP,” Journal of Cell Biology, vol. 166, no. 3, pp. 369–380, 2004.
[82]
T. H. Lee, J. Shank, N. Cusson, and M. A. Kelliher, “The kinase activity of Rip1 is not required for tumor necrosis factor-α-induced IκB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2,” Journal of Biological Chemistry, vol. 279, no. 32, pp. 33185–33191, 2004.
[83]
D. Mueller-Burke, R. C. Koehler, and L. J. Martin, “Rapid NMDA receptor phosphorylation and oxidative stress precede striatal neurodegeneration after hypoxic ischemia in newborn piglets and are attenuated with hypothermia,” International Journal of Developmental Neuroscience, vol. 26, no. 1, pp. 67–76, 2008.
[84]
K. Blomgren and H. Hagberg, “Free radicals, mitochondria, and hypoxia-ischemia in the developing brain,” Free Radical Biology and Medicine, vol. 40, no. 3, pp. 388–397, 2006.
[85]
K. I. Fritz, F. Groenendaal, C. Andersen, S. T. Ohnishi, O. P. Mishra, and M. Delivoria-Papadopoulos, “Deleterious brain cell membrane effects after NMDA receptor antagonist administration to newborn piglets,” Brain Research, vol. 816, no. 2, pp. 438–445, 1999.
[86]
R. C. Vannucci, R. M. Brucklacher, and S. J. Vannucci, “The effect of hyperglycemia on cerebral metabolism during hypoxia- ischemia in the immature rat,” Journal of Cerebral Blood Flow and Metabolism, vol. 16, no. 5, pp. 1026–1033, 1996.
[87]
R. C. Vannucci, J. Towfighi, and S. J. Vannucci, “Secondary energy failure after cerebral hypoxia-ischemia in the immature rat,” Journal of Cerebral Blood Flow and Metabolism, vol. 24, no. 10, pp. 1090–1097, 2004.
[88]
S. J. Vannucci, L. B. Seaman, and R. C. Vannucci, “Effects of hypoxia-ischemia on GLUT1 and GLUT3 glucose transporters in immature rat brain,” Journal of Cerebral Blood Flow and Metabolism, vol. 16, no. 1, pp. 77–81, 1996.
[89]
K. M. Irrinki, K. Mallilankaraman, R. J. Thapa et al., “Requirement of FADD, NEMO, and BAX/BAK for aberrant mitochondrial function in tumor necrosis factor alpha-induced necrosis,” Molecular and Cellular Biology, vol. 31, no. 18, pp. 3745–3758, 2011.
[90]
P. Nicotera, M. Leist, and E. Ferrando-May, “Intracellular ATP, a switch in the decision between apoptosis and necrosis,” Toxicology Letters, vol. 102-103, pp. 139–142, 1998.
[91]
N. A. Riobó, E. Clementi, M. Melani et al., “Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation,” Biochemical Journal, vol. 359, no. 1, pp. 139–145, 2001.
[92]
B. Beltrán, A. Mathur, M. R. Duchen, J. D. Erusalimsky, and S. Moncada, “The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 26, pp. 14602–14607, 2000.
[93]
S. J. Chinta and J. K. Andersen, “Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson's disease,” Free Radical Biology and Medicine, vol. 41, no. 9, pp. 1442–1448, 2006.
[94]
J. S. Beckman and W. H. Koppenol, “Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly,” American Journal of Physiology, vol. 271, no. 5, pp. C1424–C1437, 1996.
[95]
C. W. Davis, B. J. Hawkins, S. Ramasamy et al., “Nitration of the mitochondrial complex I subunit NDUFB8 elicits RIP1- and RIP3-mediated necrosis,” Free Radical Biology and Medicine, vol. 48, no. 2, pp. 306–317, 2010.
[96]
R. Chavez-Valdez, L. J. Martin, D. L. Flock, and F. J. Northington, “RIP-1 Kinase Inhibition attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia,” Journal of Neuroscience. In press.
[97]
A. Guidarelli, L. Cerioni, and O. Cantoni, “Inhibition of complex III promotes loss of Ca2+ dependence for mitochondrial superoxide formation and permeability transition evoked by peroxynitrite,” Journal of Cell Science, vol. 120, no. 11, pp. 1908–1914, 2007.
[98]
M. Whiteman, J. S. Armstrong, N. S. Cheung et al., “Peroxynitrite mediates calcium-dependent mitochondrial dysfunction and cell death via activation of calpains,” The FASEB Journal, vol. 18, no. 12, pp. 1395–1397, 2004.
[99]
C. C. T. Smith, S. M. Davidson, S. Y. Lim, J. C. Simpkin, J. S. Hothersall, and D. M. Yellon, “Necrostatin: a potentially novel cardioprotective agent?” Cardiovascular Drugs and Therapy, vol. 21, no. 4, pp. 227–233, 2007.
[100]
N. Wagener, M. Ackermann, S. Funes, and W. Neupert, “A pathway of protein translocation in mitochondria mediated by the AAA-ATPase Bcs1,” Molecular Cell, vol. 44, no. 2, pp. 191–202, 2011.
[101]
T. S. Hsu, P. M. Yang, J. S. Tsai, and L. Y. Lin, “Attenuation of cadmium-induced necrotic cell death by necrostatin-1: potential necrostatin-1 acting sites,” Toxicology and Applied Pharmacology, vol. 235, no. 2, pp. 153–162, 2009.
[102]
Y. Lin, S. Choksi, H. M. Shen et al., “Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation,” Journal of Biological Chemistry, vol. 279, no. 11, pp. 10822–10828, 2004.
[103]
X. Xu, C. C. Chua, J. Kong et al., “Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells,” Journal of Neurochemistry, vol. 103, no. 5, pp. 2004–2014, 2007.
[104]
C. Vande Velde, J. Cizeau, D. Dubik et al., “BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore,” Molecular and Cellular Biology, vol. 20, no. 15, pp. 5454–5468, 2000.
[105]
G. Chen, J. Cizeau, C. V. Velde et al., “Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins,” Journal of Biological Chemistry, vol. 274, no. 1, pp. 7–10, 1999.
[106]
Y. Chen, W. Lewis, A. Diwan, E. H. Y. Cheng, S. J. Matkovich, and G. W. Dorn, “Dual autonomous mitochondrial cell death pathways are activated by Nix/BNip3L and induce cardiomyopathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 20, pp. 9035–9042, 2010.
[107]
Y. H. Yook, K. H. Kang, O. Maeng et al., “Nitric oxide induces BNIP3 expression that causes cell death in macrophages,” Biochemical and Biophysical Research Communications, vol. 321, no. 2, pp. 298–305, 2004.
[108]
D. A. Kubli, M. N. Quinsay, C. Huang, Y. Lee, and A. B. Gustafsson, “Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion,” American Journal of Physiology, vol. 295, no. 5, pp. H2025–H2031, 2008.
[109]
H. J. An, O. Maeng, K. H. Kang et al., “Activation of Ras up-regulates pro-apoptotic BNIP3 in nitric oxide-induced cell death,” Journal of Biological Chemistry, vol. 281, no. 45, pp. 33939–33948, 2006.
[110]
R. K. Bruick, “Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 16, pp. 9082–9087, 2000.
[111]
L. Cabon, P. Galán-Malo, A. Bouharrour et al., “BID regulates AIF-mediated caspase-independent necroptosis by promoting BAX activation,” Cell Death and Differentiation, vol. 19, no. 2, pp. 245–256, 2012.
[112]
G. Chinnadurai, S. Vijayalingam, and S. B. Gibson, “BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathological functions,” Oncogene, vol. 27, supplement 1, pp. S114–S127, 2008.
[113]
S. J. Hewett, J. K. Muir, D. Lobner, A. Symons, and D. W. Choi, “Potentiation of oxygen-glucose deprivation-induced neuronal death after induction of iNOS,” Stroke, vol. 27, no. 9, pp. 1586–1591, 1996.
[114]
P. Nicotera and S. A. Lipton, “Excitotoxins in neuronal apoptosis and necrosis,” Journal of Cerebral Blood Flow and Metabolism, vol. 19, no. 6, pp. 583–591, 1999.
[115]
G. Faraco, S. Fossati, M. E. Bianchi et al., “High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo,” Journal of Neurochemistry, vol. 103, no. 2, pp. 590–603, 2007.
[116]
J. D. E. Barks, Y. Q. Liu, Y. Shangguan, J. Li, J. Pfau, and F. S. Silverstein, “Impact of indolent inflammation on neonatal hypoxic-ischemic brain injury in mice,” International Journal of Developmental Neuroscience, vol. 26, no. 1, pp. 57–65, 2008.
[117]
V. C. Pimentel, F. V. Pinheiro, K. S. De Bona et al., “Hypoxic-ischemic brain injury stimulates inflammatory response and enzymatic activities in the hippocampus of neonatal rats,” Brain Research, vol. 1388, pp. 134–140, 2011.
[118]
J. A. Wixey, H. E. Reinebrant, and K. M. Buller, “Inhibition of neuroinflammation prevents injury to the serotonergic network after hypoxia-ischemia in the immature rat brain,” Journal of Neuropathology and Experimental Neurology, vol. 70, no. 1, pp. 23–35, 2011.
[119]
M. A. Kelliher, S. Grimm, Y. Ishida, F. Kuo, B. Z. Stanger, and P. Leder, “The death domain kinase RIP mediates the TNF-induced NF-κB signal,” Immunity, vol. 8, no. 3, pp. 297–303, 1998.
[120]
C. H. Nijboer, C. J. Heijnen, F. Groenendaal, M. J. May, F. Van Bel, and A. Kavelaars, “A dual role of the nf-kappa b pathway in neonatal hypoxic-ischemic brain damage,” Stroke, vol. 39, no. 9, pp. 2578–2586, 2008.
[121]
Y. Okada, M. Kato, H. Minakami et al., “Reduced expression of flice-inhibitory protein (FLIP) and NFκB is associated with death receptor-induced cell death in human aortic endothelial cells (HAECs),” Cytokine, vol. 15, no. 2, pp. 66–74, 2001.
[122]
J. Kucharczak, M. J. Simmons, Y. Fan, and C. Gélinas, “To be, or not to be: NF-κB is the answer—role of Rel/NF-κB in the regulation of apoptosis,” Oncogene, vol. 22, no. 56, pp. 8961–8982, 2003.
[123]
F. Martinon, K. Burns, and J. Tschopp, “The Inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β,” Molecular Cell, vol. 10, no. 2, pp. 417–426, 2002.
[124]
J. L. Poyet, S. M. Srinivasula, M. Tnani, M. Razmara, T. Fernandes-Alnemri, and E. S. Alnemri, “Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1,” Journal of Biological Chemistry, vol. 276, no. 30, pp. 28309–28313, 2001.
[125]
N. J. Yoo, W. S. Park, S. Y. Kim et al., “Nod1, a CARD protein, enhances pro-interleukin-1β processing through the interaction with pro-caspase-1,” Biochemical and Biophysical Research Communications, vol. 299, no. 4, pp. 652–658, 2002.
[126]
M. R. Freeman, “Specification and morphogenesis of astrocytes,” Science, vol. 330, no. 6005, pp. 774–778, 2010.
[127]
L. Stridh, P. L.P. Smith, A. S. Naylor, X. Wang, and C. Mallard, “Regulation of Toll-like receptor 1 and -2 in neonatal mice brains after hypoxia-ischemia,” Journal of Neuroinflammation, vol. 8, article 45, 2011.
[128]
M. D. Laird, C. Wakade, C. H. Alleyne, and K. M. Dhandapani, “Hemin-induced necroptosis involves glutathione depletion in mouse astrocytes,” Free Radical Biology and Medicine, vol. 45, no. 8, pp. 1103–1114, 2008.
[129]
P. S. Shah, A. Ohlsson, and M. Perlman, “Hypothermia to treat neonatal hypoxic ischemic encephalopathy: systematic review,” Archives of Pediatrics and Adolescent Medicine, vol. 161, no. 10, pp. 951–958, 2007.
[130]
S. Shankaran, A. R. Laptook, R. A. Ehrenkranz et al., “Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy,” New England Journal of Medicine, vol. 353, no. 15, pp. 1574–1584, 2005.
[131]
C. Portera-Cailliau, D. L. Price, and L. J. Martin, “Excitotoxic neuronal death in the immature brain is an apoptosis- necrosis morphological continuum,” Journal of Comparative Neurology, vol. 378, no. 1, pp. 70–87, 1997.