全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

海拉尔-塔木察格盆地中部断陷带油气富集主控因素分析—断层和盖层双控模式

, PP. 1338-1351

Keywords: 裂陷盆地,盖层,毛细管封闭,断层,后期活动

Full-Text   Cite this paper   Add to My Lib

Abstract:

?海拉尔-塔木察格盆地为典型的裂陷盆地,发育两套区域性盖层:即强烈裂陷阶段和断-坳转化阶段发育的泥质岩盖层(含少量凝灰岩),累积厚度一般为50~120m,单层厚度为20~50m,其间夹1~2m厚的砂岩,大套泥岩连续分布,为质纯的泥质岩盖层.利用自行设计的排替压力仪测试43块泥岩和凝灰岩样品,其值为0.04~10.00MPa,校正到实际埋深的条件,排替压力为0.09~20.01MPa.随着埋藏深度增加,排替压力逐渐增大,与同深度含油的砂岩或砾岩储层排替压力相比大1~10倍.泥岩盖层排替压力及其与同深度含油砂岩或砾岩储层排替压力差在埋深超过1000m后明显增大.盖-储排替压力差决定盖层封闭的最大烃柱高度变化范围为300~2000m,远大于同深度圈闭的幅度,盖层自身不会渗漏.通过乌尔逊凹陷乌20井深浅储层GOI,均一温度和原油成熟度分析,认为大磨拐河组二段油藏为调整早期油藏形成的次生油藏,主要分布在反转构造上.断裂是破坏盖层完整性的主要原因之一,三种类型断层通常造成油气穿越区域性盖层运移:一是正反转断层破坏早期的封闭条件,造成早期聚集油气的调整运移;二是具有剪切型泥岩涂抹结构的断裂,当断距超过泥岩盖层厚度5倍时,泥岩涂抹失去连续性,垂向开启;三是构造反转阶段形成的正断层,具有典型的碎裂结构,容易造成油气垂向运移.裂陷盆地具有典型“断-盖”共控油气富集层位的特征,95%的地质储量受区域性盖层控制,只有5%的油气受开启断层控制,在区域性盖层之上形成次生油气藏.

References

[1]  23 Knipe R J, Jones G, Fisher Q J. Faulting, fault sealing and fluid flow in hydrocarbon reservoirs: An Introduction. In: Jones G, Fisher Q J, Knipe R J, eds. Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs. Geol Soc London Spec Publ, 1998, 147: 1-25
[2]  24 Mandl G, Harkness R M. Hydrocarbon migration by hydraulic fracturing. In: Jones M E, Preston R M F, eds. Deformation of Sediments and Sedimentary Rocks. Geol Soc London Spec Publ, 1987, 29: 39-53
[3]  25 Roberts S J, Nunn J A. Episodic fluid expulsion from geopressured sediments. Mar Petrol Geol, 1995, 12: 195-204
[4]  26 Nygard R, Gutierrez M, Gautam R, et al. Compaction behaviourof argillaceous sediments as function of diagenesis. Mar Petrol Geol, 2004, 21: 349-362
[5]  27 Nygard R, Gutierrez M, Bratli R K, et al. Brittle-ductile transition, shear failure and leakage in shales and mudrocks. Mar Petrol Geol, 2006, 23: 201-212
[6]  28 Holland M, Urai J L, van der Zee W, et al. Fault gouge evolution in highly overconsolidated claystones. J Struct Geol, 2006, 28: 323-332
[7]  1 付晓飞, 王勇, 渠永红, 等. 被动裂陷盆地油气分布规律及主控因素分析—以塔木察格盆地塔南坳陷为例. 地质科学, 2011, 46: 1-13
[8]  2 胡朝元. 生油区控制油气田分布—中国东部陆相盆地进行区域勘探的有效理论. 石油学报, 1982, 2: 9-13
[9]  3 赵贤正, 金凤鸣, 刘震, 等. 二连盆地地层岩性油藏"多元控砂-四元成藏-主元富集"与勘探实践(Ⅰ)—"多元控砂"机理. 岩性油气藏, 2007, 19: 9-15
[10]  4 董焕忠. 海拉尔盆地乌尔逊凹陷南部大磨拐河组油气来源及成藏机制. 石油学报, 2011, 32: 62-69
[11]  5 高瑞琪, 蔡希源. 松辽盆地油气田形成条件与分布规律. 北京: 石油工业出版社, 1997. 10-50
[12]  8 付晓飞, 董晶, 吕延防, 等. 海拉尔盆地乌尔逊-贝尔凹陷断裂构造特征及控藏机理. 地质学报, 2012, 86: 1-13
[13]  9 Eadington P J, Lisk M, Krieger F W. Identifying oil well sites. United States Patent (No. 5543616), 1996. 1-5
[14]  10 王飞宇, 庞雄奇, 曾花森, 等. 古油层识别技术及其在石油勘探中的应用. 新疆石油地质, 2005, 26: 565-569
[15]  11 Schmatza J, Vrolijk P J, Urai J L. Clay smear in normal fault zones-the effect of multilayers and clay cementation in water-saturated model experiments. J Struct Geol, 2010, 32: 1834-1849
[16]  12 Sperrevik S, F?rseth R B, Gabrielsen R H. Experiments on clay smear formation along faults. Petrol Geosci, 2000, 6: 113-123
[17]  13 Lindsay N G., Murphy F C, Walsh J J, et al. Outcrop studies of shale smear on fault surface. Int Ass Sediment Spe Publ, 1993, 15: 113-123
[18]  14 Doughty P T. Clay smear seals and fault sealing potential of an exhumed growth fault, Rio Grande rift, New Mexico. AAPG, 2003, 87: 427-444
[19]  15 Faerseth R B. Shale smear along large faults: Continuity of smear and the fault seal capacity. J Geol Soc, 2006, 163: 741-751
[20]  16 Koledoye B A, Aydin A, May E. A new process-based methodology for analysis of shale smear along normal faults in the Niger Delta. AAPG, 2003, 87: 445-663
[21]  17 Takahashi M. Permeability change during experimental fault smearing. J Geophys Res, 2003, 108 (B5): 1-15
[22]  18 Childs C, Walsh J J, Manzocchi T, et al. Definition of a fault permeability predictor from outcrop studies of a faulted turbidite sequence, Taranaki, New Zealand. In: Jolley S J, Barr D, Walsh J J, et al., eds. Structurally Complex Reservoirs. Geol Soc London Spec Publ, 2007, 292: 235-258
[23]  19 Gibson R G. Fault-zone seals in siliciclastic strata of the Columbus Basin, Offshore Trinidad. AAPG, 1994, 78: 1372-1385
[24]  20 Yielding G. Shale gouge ratio-Calibration by geohistory. In: Koeslter A G, Hunsdale R, eds. Hydrocarbon Seal Quantification. Norwegian Petrol Soc Spec Publ, 2002. 1-15
[25]  21 付晓飞, 温海波, 吕延防, 等. 勘探早期断层封闭性快速评价方法及应用. 吉林大学学报(地球科学版), 2011, 41: 615-621
[26]  22 Withjack M O, Jamison W R. Deformation produced by oblique rifting. Tectonophysics, 1986, 126: 99-124
[27]  6 Watts N L. Theoretical aspects of caprock and fault sealing for single-and two-phase hydrocarbon columns. Mar Petrol Geol, 1987, 4: 274-307
[28]  7 吕延防, 陈章明, 付广, 等. 盖岩排替压力研究. 大庆石油学院学报, 1993, 17: 1-7
[29]  29 Fisher Q J, Casey M, Harris S D, et al. Fluild flow properties of faults in sandstone: The importance of temperature history. Geology, 2003, 31: 965-968
[30]  30 Cuisiat F, Skurtveit E. An experimental investigation of the development and permeability of clay smears along faults in uncemented sediments. J Struct Geol, 2010, 32: 1850-1863
[31]  31 Fossen H. Structural Geology. New York: Cambridge University Press, 2010. 119-185

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133