79 Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32-Kbar: Implications for continental growth and crust-mantle recycling. J Petrol, 1995, 36: 891-931
[4]
80 Cole R B, Steward B W. Continental margin volcanism at sites of spreading ridge subduction: Examples from southern Alaska and western California. Tectonophysics, 2009, 464: 118-136
[5]
81 Thorkelson D J, Breitsprecher K. Partial melting of slab window margins: Genesis of adakitic and non-adakitic magmas. Lithos, 2005, 79: 25-41
[6]
82 Kay R W, Kay S M. Delamination and delamination magmatism. Tectonophysics, 1993, 219: 177-189
[7]
83 Li J W, Zhao X F, Zhou M F, et al. Late Mesozoic magmatism from the Daye region, Eastern China: U-Pb ages, petrogenesis, and geodynamic implications. Contrib Mineral Petrol, 2009, 157: 383-409
[8]
84 Mao J W, Wang Y T, Lehmann B, et al. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications. Ore Geol Rev, 2006, 29: 307-324
[9]
85 Li X H, Li W X, Wang X C, et al. SIMS U-Pb zircon geochronology of porphyry Cu-Au-(Mo) deposits in the Yangtze River metallogenic belt, Eastern China: Magmatic response to Early Cretaceous lithospheric extension. Lithos, 2010, 119: 427-438
112 Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ Geol, 2003, 98: 1515-1533
[22]
113 Hildreth W, Moorbath S. Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol, 1988, 98: 455-489
[23]
86 Xu W L, Gao S, Wang Q H, et al. Mesozoic crustal thickening of the Eastern North China craton: Evidence fromeclogite xenoliths and petrologic implications. Geology, 2006, 34: 721-724
[24]
87 Lang J R, Titley S R. Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of porphyry copper deposits. Econ Geol, 1998, 93: 138-170
[25]
88 Bachmann O, Dungan M A, Bussy F. Insights into shallow magmatic processes in large silicic magma bodies: The trace element record in the Fish Canyon magma body, Colorado. Contrib Mineral Petrol, 2005, 149: 338-349
[26]
89 Fujimaki H. Partition coefficients of Hf, Zr, and REE between zircon, apatite and liquid. Contrib Mineral Petrol, 1986, 94: 42-45
[27]
90 Hoskin P W O, Kinny P D, Wyborn D, et al. Identifying accessory mineral saturation during differentiation in granitoid magmas: An integrated approach. J Petrol, 2000, 41: 1365-1396
[28]
91 Watson E B, Capobianco C J. Phosphorus and the rare earth elements in felsic magmas: An assessment of the role of apatite. Geochim Cosmochim Acta, 1981, 45: 2349-2358
[29]
92 Castillo P R, Janney P E, Solidum R U. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol, 1999, 134: 33-51
[30]
93 Macpherson C G., Dreher S T, Thirlwall M F. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett, 2006, 243: 581-593
[31]
94 Gao Y F, Santosh M, Hou Z Q, et al. High Sr/Y magmas generated through crystal fractionation: Evidence from Mesozoic volcanic rocks in the northern Taihang orogen, North China Craton. Gondwana Res, 2011, 7: 152-168
23 Wang Q, Derek A, Wyman L, et al. Partial melting of thickened or delaminated lower crust in the middle of Eastern China: Implications for Cu-Au mineralization. J Geol, 2007, 115: 149-161
26 Franzini M, Leoni L, Saitta M. A simple method to valuate the matrix effect in X-ray fluorescence analysis. X-ray Spectrom, 1972, 1: 151-154
[42]
27 Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 2000, 51: 507-513
[43]
28 Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol, 2004, 211: 47-69
[44]
29 Griffin W L, Powell W J, Pearson N J, et al. GLITTER: Data reduction software for laser ablation ICP-MS. In: Sylvester P, eds. Laser Ablation-ICP-MS in the Earth Sciences. Current Practices and Outstanding Issues: Mineralogical Association of Canada Short Course, 2008, 40: 308-311
31 Elhlou S, Belousova E, Griffin W L, et al. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim Cosmochim Acta, 2006, 70: A158
[47]
32 Blichert-Toft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett, 1997, 148: 243-258
[48]
33 Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LA-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta, 2003, 64: 133-147
[49]
34 Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem, 2003, 53: 27-62
[50]
35 Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures. Rev Mineral Geochem, 2003, 53: 469-500
[51]
36 Taylor S R, McLennan S M. The Continental Crusts: Its Composition and Evolution. Oxford: Blackwell, 1985. 1-150
[52]
37 Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes (in magmatism in the ocean basins). Geol Soc Spec Publ, 1989, 42: 313-345
[53]
56 Chen B, Jahn B M, Arakawa Y, et al. Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang orogen, North China craton: Elemental and Sr-Nd-Pb isotopic constraints. Contrib Mineral Petrol, 2004, 148: 489-501
[54]
57 Richards J P, Boyce A J, Pringle M S. Geologic evolution of the Escondida Area, Northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization. Econ Geol, 2001, 96: 271-305
[55]
58 Richards J R, Kerrich R. Special paper: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Econ Geol, 2007, 102: 537-576
[56]
59 Davidson J P, Turner S, Handley H, et al. Amphibole "sponge" in arc crust? Geology, 2007, 35: 787-790
[57]
60 Davidson J P, Turner S P, Macpherson C G. Water storage and amphibole control in arc magma differentiation. Geochim Cosmochim Acta, 2008, 72: A201
[58]
61 Moyen J F. High Sr/Y and La/Yb ratios: The meaning of the "adakitic signature". Lithos, 2009, 112: 556-574
[59]
62 Annen C, Blundy J D, Sparks R S J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol, 2006, 47: 505-539
[60]
63 Burnham C W. Magmas and hydrothermal fluids. In: Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits. 2nd ed. New York: J Wiley Interscience, 1979. 71-136
[61]
64 Naney M T. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. Am J Sci, 1983, 283: 993-1033
[62]
65 Rutherford M J, Devine J D. The May 18, 1980, eruption of Mount St. Helens 3. Stability and chemistry of amphibole in the magma chamber. J Geophys Res, 1988, 93: 11949-11959
[63]
66 Watson E B, Harrison T M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett, 1983, 64: 295-304
70 Miller C F, McDowell S M, Mapes R W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 2003, 31: 529-532
[68]
71 Best M G, Christiansen E H. Igneous Petrology. Oxford: Blackwell Science, 2001. 1-480
[69]
72 Clemens J D, Watkins J M. The fluid regime of high-temperature metamorphism during granitoid magma genesis. Contrib Mineral Petrol, 2001, 140: 600-606
[70]
73 Vielzeuf D, Montel J M. Partial melting of metagreywackes: Part 1. Fluid-absent experiments and phase relationships. Contrib Mineral Petrol, 1994, 117: 375-393
[71]
74 Clemens J D, Vielzeuf D. Constraints on melting and magma production in the crust. Earth Planet Sci Lett, 1987, 86: 287-306
[72]
75 Patino Douce A E, Harris N. Experimental constraints on Himalayan anatexis. J Petrol, 1998, 39: 689-710
[73]
76 Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 2005, 79: 1-24
6 Xu Z W, Lu X C, Ling H F, et al. Metallogenetic mechanism and timing of late superimposing fluid mineralization in the Dongguashan stratified copper deposit, Anhui Province. Acta Geol Sin, 2005, 79: 405-413
13 Wu C L, Wang Z H, Qiao D W, et al. Types of enclaves and their features and Origins in intermediate-acid intrusive rocks from the Tongling District, Anhui Province, China. Acta Geol Sin, 2000, 74: 54-67
40 Vervoort J D, Patchett P J. Behaviour of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites. Geochim Cosmochim Acta, 1996, 60: 3717-3733
[91]
41 Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 2002, 61, 237-269
[92]
42 Belousova B A, Griffin W L, O''Reilly S Y. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: Examples from Eastern Australian granitoids. J Petrol, 2006, 47: 329-353
[93]
43 Kemp A I S, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 2007, 315: 980-983
[94]
44 Shaw S E, Flood R H. Zircon Hf isotopic evidence for mixing of crustal and silicic mantle-derived magmas in a zoned granite pluton, Eastern Australia. J Petrol, 2009, 50: 147-168
[95]
45 Qin J F, Lai S C, Diwu C R, et al. Magma mixing origin for the post-collisional adakitic monzogranite of the Triassic Yangba pluton, Northwestern margin of the South China block: Geochemistry, Sr-Nd isotopic, zircon U-Pb dating and Hf isotopic evidences. Contrib Mineral Petrol, 2009, 159: 389-409
48 Wang Q, Wyman D A, Xu J F, et al. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (Eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, 2006, 89: 424-446
[99]
49 Yan J, Chen J F, Xu X S. Geochemistry of Cretaceous mafic rocks from the Lower Yangtze region, Eastern China: Characteristics and evolution of the lithospheric mantle. J Asian Earth Sci, 2008, 33:177-193
[100]
50 Ames L, Zhou G Z, Xiong B C. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics, 1996, 15: 472-489
[101]
51 Jahn B M, Wu F Y, Lo C H. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem Geol, 1999, 157: 119-146
[102]
52 Fowler M B, Henney P J. Mixed Caledonian appinite magmas: Implications for lamprophyre fractionation and high Ba-Sr granite genesis. Contrib Mineral Petrol, 1996, 126: 199-215
[103]
53 Fowler M B, Henney P J, Darbyshire D P F, et al. Petrogenesis of high Ba-Sr granites: The Rogart pluton, Sutherland. J Geol Soc, 2001, 158: 521-534
55 Chen B, Jahn B M, Zhai M G. Sr-Nd isotopic characteristics of the Mesozoic magmatism in the Taihang-Yanshan orogen, north China craton, and implications for Archean lithosphere thinning. J Geol Soc, 2003, 160: 963-970