全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

隐钾锰矿40Ar/39Ar定年及锰矿脉生长速率:以云南巴夜次生氧化锰矿为例

, PP. 1365-1375

Keywords: 隐钾锰矿,40Ar/39Ar定年,风化壳,生长速率,云贵高原

Full-Text   Cite this paper   Add to My Lib

Abstract:

?对氧化锰矿床的年代学研究不仅可以直接限定锰矿床次生富集成矿的时间及锰氧化物的生长速率,而且可为区域构造隆升、地貌形成过程和古气候演变等重大地质事件提供关键的年代学信息.本文报道云贵高原典型次生氧化锰矿-巴夜锰矿的高精度40Ar/39Ar定年数据,并根据40Ar/39Ar年龄计算了锰矿脉的生长速率.研究对象选自两条氧化锰矿脉(脉宽3~6cm),其中A脉与含锰岩系即中元古界锰铝榴石片岩的片理平行,产状平缓,而B脉则与锰铝榴石片岩的片理垂直,产状近于直立.矿相学观察、粉晶X-射线衍射、扫描电子显微镜-能谱分析和电子探针成分分析结果表明,上述两条矿脉均主要由隐钾锰矿组成,矿物结晶程度较高,具有针状和纤维状的良好晶形,K2O含量为0.96%~4.70%.激光阶段加热40Ar/39Ar同位素分析结果表明,A脉的形成时间为(1.35±0.05)~(1.16±0.04)Ma(坪年龄,2σ;n=14);根据样品的空间分布和坪年龄计算出其生长速率为115~153mm/Ma.B脉的年龄略微年轻,介于(1.23±0.05)~(1.01±0.09)Ma(坪年龄,2σ;n=7),计算的生长速率为34~67mm/Ma.A脉和B脉生长速率的差异反映氧化锰矿的生长与流体体系的压力大小有关.世界上其他地区氧化锰矿中锰结核的生长速率一般为0.3~9mm/Ma,比巴夜矿区氧化锰矿脉的生长速率低1~2个数量级,说明氧化锰矿的生长机制是控制其生长速率的重要因素:巴夜矿区的氧化锰矿脉由风化溶液中四价锰离子的直接沉淀而形成并充填在裂隙中,矿脉自脉壁向中心生长,而其他地区用于生长速率计算的样品均为环带状锰结核,受控于氧化锰的自催化氧化作用或锰-铁氧化物之间的催化氧化,锰氧化物自结核中心向外生长.隐钾锰矿的40Ar/39Ar定年结果还表明,更新世时期云贵高原以温暖潮湿的古气候为主,并经历了显著的构造抬升.

References

[1]  11 Vasconcelos P M. K-Ar and 40Ar/39Ar geochronology of weathering processes. Annu Rev Earth Planet Sci, 1999, 27: 183-229
[2]  12 Nahon D, Parc S. Lateritic concentrations of manganese oxyhydroxides and oxides. Geol Runds, 1990, 79: 319-326
[3]  13 Beauvais A, Ruffet G, Héocque O, et al. Chemical and physical erosion rhythms of the West African Cenozoic morphogenesis: The 39Ar-40Ar dating of supergene K-Mn oxides. J Geophys Res, 2008, 113: F04007
[4]  14 Carmo I O, Vasconcelos P. Geochronological evidence for pervasive Miocene weathering, Minas Gerais, Brazil. Earth Surf Process Landf, 2004, 29: 1303-1320
[5]  15 Li J W, Vasconcelos P. Cenozoic continental weathering and its implications for the palaeoclimate; evidence from 40Ar/39Ar geochronology of supergene K-Mn oxides in Mt Tabor, central Queensland, Australia. Earth Planet Sci Lett, 2002, 200: 223-239
[6]  16 姚培慧. 中国锰矿志. 北京: 冶金工业出版社, 1995
[7]  17 叶连俊, 范德廉, 杨培基. 中国锰矿床. 见:《中国矿床》编委会. 中国矿床(中册). 北京: 地质出版社, 1994
[8]  18 Li J W, Vasconcelos P, Zhang W, et al. Timing and duration of supergene mineralization at the Xinrong manganese deposit, western Guangdong Province, south China: Cryptomelane 40Ar/39Ar dating. Miner Depos, 2007, 42: 361-383
[9]  19 段云龙, 万大富. 滇西南地区巴夜式锰矿成因分析. 中国第四届矿山地质学术会议, 2002. 206-209
[10]  20 侯宗林, 薛友智, 黄金水, 等. 扬子地台周边锰矿. 北京: 冶金工业出版社, 1997
[11]  21 邓晓东. 云贵高原及邻区次生氧化锰矿晚新生代大规模成矿作用及其构造和古气候意义. 博士学位论文. 武汉: 中国地质大学, 2011. 1-223
[12]  22 Kuiper K F, Deino A, Hilgen F J, et al. Synchronizing rock clocks of Earth history. Science, 2008, 320: 500-504
[13]  23 Fleck R J, Sutter J F, Elliott D H. Interpretation of discordant 40Ar/39Ar age-spectra of Mesozoic tholeiites from Antarctica. Geochim Cosmochim Acta, 1977, 41: 15-32
[14]  24 Lee J Y, Marti K, Severinghaus J P, et al. A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Acta, 2006, 70: 4507-4512
[15]  25 Graham I J, Carter R M, Ditchburn R G, et al. Chronostratigraphy of ODP 181, Site 1121 sediment core (Southwest Pacific Ocean), using 10Be/9Be dating of entrapped ferromanganese nodules. Mari Geol, 2004, 205: 227-247
[16]  26 Guichard F, Reyss J L, Yokoyama Y. Growth rate of manganese nodule measured with 10Be and 26Al. Nature, 1978, 272: 155-156
[17]  27 Han X Q, Jin X L, Yang S F, et al. Rhythmic growth of Pacific ferromanganese nodules and their Milankovitch climatic origin. Earth Planet Sci Lett, 2003, 211: 143-157
[18]  28 Segl M, Mangini A, Beer J, et al. Growth rate variations of manganese nodules and crusts induced by paleoceanographic events. Paleoceanography, 1989, 4: 511-530
[19]  29 Vlasova I E, Kuiper V M. New data on growth rates of eastern south pacific ferromanganese nodules. Oceanology, 1994, 34: 104-111
[20]  30 Dammer D, Chivas A R, McDougall I. Isotopic dating of supergene manganese oxides from the groote eylandt deposit, Northern Territory, Australia. Econ Geol, 1996, 91: 386-401
[21]  31 Hong J. Crystal growth in high gravity. J Cryst Growth, 1997, 181: 459-460
[22]  32 Mote T I, Becker T A, Renne P, et al. Chronology of exotic mineralization at El Salvador, Chile, by 40Ar/39Ar dating of copper wad and supergene alunite. Econ Geol, 2001, 96: 351-366
[23]  33 Passchier C W, Trouw R A J. Microtectonics. Berlin: Springer, 2005
[24]  34 Ramsay J G. The crack-seal mechanism of rock deformation. Nature, 1980, 284: 135-139
[25]  35 Burns R G, Burns V M. Mechanism for nucleation and growth of manganese nodules. Nature, 1975, 255: 130-131
[26]  36 Hem J D. Redox processes at surfaces of manganese oxide and their effects on aqueous metal ions. Chem Geol, 1978, 21: 199-218
[27]  37 Xiao X Y, Shen J, Wang S M, et al. The variation of the southwest monsoon from the high resolution pollen record in Heqing Basin, Yunnan Province, China for the last 2.78 Ma. Paleogeogr Paleoclimatol Paleoecol, 2010, 287: 45-57
[28]  38 童国榜, 张俊牌, 羊向东, 等. 云贵高原晚新生代孢粉植物群与环境变迁. 海洋地质与第四纪地质, 1994, 14: 91-104
[29]  39 沈吉, 安芷生, 王苏民, 等. 鹤庆深钻岩芯揭示的构造-沉积旋回及其西南季风区2.78 Ma以来的气候环境演化. 中国科学D辑: 地球科学, 2008, 38: 355-362pollen record in Heqing Basin, Yunnan Province, China for the last 2.78 Ma. Paleogeogr Paleoclimatol Paleoecol, 2010, 287: 45-57
[30]  1 Ostwald J. Mineralogy of the groote eylandt manganese oxides: A review. Ore Geol Rev, 1988, 4: 3-45
[31]  2 Roy S. Mineralogy of the different genetic types of manganese deposits. Econ Geol, 1968, 63: 760-786
[32]  3 Varentsov I M. Manganese Ores of Supergene Zone: Geochemistry of Formation. Dordrecht: Kluwer Academic Publisher, 1996
[33]  4 Chukhrov F V. Feasibility of aboslute-age determination for potassium-carrying manganese minerals. Int Geol Rev, 1966, 8: 278-280
[34]  5 Ruffet G, Innocent C, Michard A, et al. A geochronological 40Ar/39Ar and 87Rb/87Sr study of K-Mn oxides from the weathering sequence of Azul, Brazil. Geochim Cosmochim Acta, 1996, 60: 2219-2232
[35]  6 Vasconcelos P M, Becker T A, Renne P R, et al. Age and duration of weathering by 40K-40Ar and 40Ar/39Ar analysis of potassium-manganese oxides. Science, 1992, 258: 451-455
[36]  7 Dammer D, McDougall I, Chivas A R. Timing of weathering-induced alteration of manganese deposits in Western Australia: Evidence from K/Ar and 40Ar/39Ar dating. Econ Geol, 1999, 94: 87-108
[37]  8 Hénocque O, Ruffet G, Colin F, et al. 40Ar/39Ar dating of West African lateritic cryptomelanes. Geochim Cosmochim Acta, 1998, 62: 2739-2756
[38]  9 Li J W, Vasconcelos P, Duzgoren-Aydin N, et al. Neogene weathering and supergene manganese enrichment in subtropical South China: An 40Ar/39Ar approach and paleoclimatic significance. Earth Planet Sci Lett, 2007, 256: 389-402
[39]  10 Li J W, Vasconcelos P M. Growth rate estimates of supergene manganese nodule by 40Ar/39Ar isotopic dating. J China Univ Geosci, 2004, 15: 312-323
[40]  38 童国榜, 张俊牌, 羊向东, 等. 云贵高原晚新生代孢粉植物群与环境变迁. 海洋地质与第四纪地质, 1994, 14: 91-104
[41]  39 沈吉, 安芷生, 王苏民, 等. 鹤庆深钻岩芯揭示的构造-沉积旋回及其西南季风区2.78 Ma以来的气候环境演化. 中国科学D辑: 地球科学, 2008, 38: 355-362 ?

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133