全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

菌藻类繁盛是泥盆纪珊瑚-层孔虫礁生态系消失的生物杀手

, PP. 1156-1167

Keywords: 菌藻类,珊瑚-层孔虫礁,泥盆纪,灭绝华南

Full-Text   Cite this paper   Add to My Lib

Abstract:

?在四川甘溪和贵州独山泥盆纪剖面的造礁珊瑚-层孔虫薄片中,发育多种菌藻类及其生物遗迹:主要包括结壳菌藻类、钻孔菌藻类、微钻孔和嵌生;并发现了寄主珊瑚-层孔虫中菌藻类及其遗迹产出部位具有骨骼残缺和虫室中常见软体组织死后的残留物质.我们的资料表明,菌藻类与寄主珊瑚-层孔虫之间是“侵略与反抗”的关系,前者对后者生长有抑制作用,后者有一定自我修复功能,二者关系中菌藻类是主动的一方;在适合寄主珊瑚-层孔虫生存环境的中泥盆世,寄主珊瑚-层孔虫能抵抗菌藻类入侵而不会死亡,菌藻类对珊瑚-层孔虫礁生态系的影响很小;在适合菌藻类而不适合珊瑚-层孔虫生长环境的晚泥盆世,后者无法抵抗前者“大举入侵”而出现凋零和死亡.我们认为菌藻类对寄主珊瑚-层孔虫的生长发育的直接抑制与杀死作用和菌藻类繁盛引发的环境恶化是F-F之交珊瑚-层孔虫礁生态系消失的重要原因,这为现代珊瑚礁患病-衰退的原因和发展趋势研究提供了古代实例.

References

[1]  8 Shen J W, Webb G E, Jell J S. Platform margins, reef facies, and microbial carbonates: A comparison of Devonian reef complexes in the Canning Basin, Western Australia, and the Guilin region, South China. Earth-Sci Rev, 2008, 88: 33-59
[2]  24 张哲, 杜远生, 龚一鸣, 等. 广西黎塘孤立台地吉维特阶-法门阶碳酸盐台地生态系到菌藻生态系的演变及其意义. 地球科学——中国地质大学学报, 2007, 32: 811-818
[3]  25 殷德伟, 张月娥, 黄和平. 桂林地区上泥盆统藻礁. 中国区域地质, 1990, 4: 334-339
[4]  26 沈建伟, 毛家仁. 桂林中、晚泥盆世微生物碳酸盐沉积、礁和丘及层序地层、古环境和古气候的意义. 中国科学D辑: 地球科学, 2005, 35: 627-637
[5]  27 Feng Q, Gong Y M, Riding R. Mid-Late Devonian calcified marine algae and cyanobacteria, South China. J Paleontol, 2010, 84: 569-587
[6]  28 范嘉松. 中国生物礁与油气. 北京: 海洋出版社, 1996. 88-116
[7]  29 Stearn C W, Pickett J W. The stromatoporoid animal revisited: Building the skeleton. Lethaia, 1994, 27: 1-10
[8]  30 Kendrick B, Risk M J, Michaelides J, et al. Amphibious microborers: Bio-eroding fungi isolated from live corals. B Mar Sci, 1982, 32: 862-867
[9]  31 Priess K, Le Campion-Alsumard T, Golubic S, et al. Fungi in corals: Black bands and density-banding of Porites lutea and P. lobata skeleton. Mar Biol, 2000, 136: 19-27
[10]  32 Golubic S, Radtke G, Le Campion-Alsumard T. Endolithic fungi in marine ecosystems. Trends Microbiol, 2005, 13: 229-235
[11]  33 Scoffin T P. The controls on growth form of intertidal massive corals, Phuket, South Thailand. Palaios, 1997, 12: 237-248
[12]  34 AlgeoT J, Scheckler S E. Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes, and marine anoxic events. Phil Trans R Soc Lond B, 1998, 353: 113-130
[13]  35 Martin R. Secular increase in nutrient level through the Phanerozoic: Implications for the productivity, biomass, and diversity of the marine biosphere. Palaios, 1996, 11: 209-219
[14]  36 Mcghee G R. The Late Devonian Mass Extinction: The Frasnian-Famennian crisis. New York: Columbia University Press, 1996. 1-327
[15]  37 Raghukumar C, Raghukumar S. Fungal invasion of massive corals. Mar Ecol, 1991, 12: 251-260
[16]  38 Winkler R, Antonius A, Renegar D A. The skeleton eroding band disease on coral reefs of Aqaba, Red Sea. Mar Ecol, 2004, 25: 129-144
[17]  39 Copper P. Reef development at the Frasnian/Famennian mass extinction boundary. Palaeogeogr Palaeoclimatol Palaeoecol, 2002, 181: 27-65
[18]  40 Loya Y, Sakai K, Yamazato K, et al. Coral bleaching: The winners and losers. Ecol Lett, 2001, 4: 122-131
[19]  41 Green E P, Bruckner. The significance of coral disease epizootiology for coral reef conservation. Biol Conserv, 2000, 96: 347-361
[20]  42 Hughes T , Baird A H, Bellwood D R, et al. Climate change, human impacts and the resilience of coral reefs. Science, 2003, 301: 929
[21]  43 Celliers L, Schleyer M H. Coral bleaching on high-latitude marginal reefs at Sodwana Bay, South Africa. Mar Pollut Bull, 2002, 44: 1380-1387
[22]  44 Douglas A E. Coral bleaching--How and why? Mar Pollut Bull, 2003, 46: 385-392
[23]  1 Riding R, Liang L. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 219: 101-115
[24]  2 Riding R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sediment Geol, 2006, 185: 229-238
[25]  3 Elias R J, Lee D J. Microborings and growth in Late Ordovician Halysitids and other corals. J Paleontol 1993, 67: 922-934
[26]  45 Crabbe M, James C. Climate change, global warming and coral reefs: Modelling the effects of temperature. Comput Biol Chem, 2008, 32: 311-314
[27]  46 Harvell D, Jordán-Dahlgren E, Merkel S, et al. Coral disease, environmental drivers, and the balance between coral and microbial associates. Oceanography, 2007, 20: 172-195
[28]  4 Adachi N, Ezaki Y, Pickett J W. Marked accumulation patterns characteristic of Lower Devonian stromatoporoid bindstone: Palaeoecological interactions between skeletal organisms and microbes. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 231: 331-346
[29]  5 Gong Y M, Li B H, Si Y L, et al. Late Devonian red tide and mass extinction. Chin Sci Bull, 2002, 47: 1138-1144
[30]  6 Xie S C, Pancost R D, Yin H F, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 2005, 434: 494-497
[31]  7 Wood R. Novel palaeoecology of a postextinction reef: Famennian (Late Devonian) of the Canning Basin, northwestern Australia. Geology, 2000, 28: 987-990
[32]  9 龚一鸣, 徐冉, 汤中道, 等. 晚泥盆世F-F之交菌藻微生物繁荣与集群绝灭的关系: 来自碳同位素和分子化石的启示. 中国科学D辑: 地球科学, 2005, 35: 140-148
[33]  10 徐冉, 龚一鸣, 汤中道. 菌藻类繁盛: 晚泥盆世大灭绝的疑凶? 地球科学——中国地质大学学报, 2006, 31: 787-797
[34]  11 Copper P, Scotese C R. Megareefs in Middle Devonian supergreenhouse climates. In: Chan M A, Archer A W, eds. Extreme Depositional Environments: Mega End Members in Geologic Time. Geol Soc Ame Spec Pap, 2003, 370: 209-229
[35]  12 吴义布, 龚一鸣, 张立军, 等. 华南泥盆纪生物礁演化及其控制因素. 古地理学报, 2010, 12: 253-267
[36]  13 鲜思远, 陈继荣, 万正权. 四川龙门山甘溪泥盆纪生态地层、层序地层与海平面变化. 岩相古地理, 1995, 15: 1-47
[37]  14 蒋武, 胡祖修, 郑家凤. 中国四川龙门山地区泥盆系牙形石. 微体古生物学报, 1996, 13: 195-204
[38]  15 刘文均, 郑荣才, 李祥辉, 等. 龙门山泥盆纪沉积盆地的古地理和古构造重建. 地质学报, 1999,73: 109-119
[39]  16 王约, 沈建伟, 周志澄. 黔南独山下、中泥盆统遗迹相与层序地层学研究. 微体古生物学报, 1997, 14: 203-213
[40]  17 王约, 王训练, 史晓颖. 贵州独山地区晚泥盆世F-F生物灭绝后的先驱生物及其在生态系统重建过程中的意义. 中国科学D辑: 地球科学, 2006, 36: 305-315
[41]  18 Wood A. “Sphaerocodium”, a misinterpreted fossil from the Wenlock Limestone. Proc Geol Assoc, 1948, 59: 9-22
[42]  19 Riding R. Calcified cyanobacteria. In: Riding R, ed. Calcareous Algae and Stromatolites. Berlin: Springer-Verlag, 1991. 55-87
[43]  20 Riding R. Calcified Plectonema (blue-green algae), a recent example of Girvanella from Aldabra Atoll. Palaeontology, 1977, 20: 33-46
[44]  21 Leighton L R. New example of Devonian predatory boreholes and the influence of brachiopod spines on predator success. Palaeogeogr Palaeoclimatol Palaeoecol, 2001, 165: 53-69
[45]  22 Adachi N, Ezaki Y, Pickett J W. Interrelations between framework-building and encrusting skeletal organisms and microbes: More-refined growth history of Lower Devonian bindstones. Sedimentology, 2007, 54: 89-105
[46]  23 徐雁前, 张同伟. 沉积物中有机氮的研究. 天然气地球科学, 1996, 7: 34-41

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133