全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黄河与长江流域水资源变化原因

, PP. 1207-1219

Keywords: 黄河,长江,径流变化,径流系数,人类活动

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用1951~2008年黄河与长江流域逐月降水和径流资料,对流域年径流变化进行趋势性检验,分析年降水量和径流量的相关关系变化,比较不同时段流域降水和径流的变化趋势和双累积曲线,以及径流对降水的敏感性变化.结果表明,黄河干流上游年降水量微弱下降,中下游降水减少趋势显著,为8.8~9.8mm/10a;而全流域径流量均呈现显著递减的趋势,为7.8~10.8mm/10a(通过95%置值度检验);径流系数也明显下降,下降范围为0.013~0.019/10a,流域产流能力下降,径流减少趋势在20世纪80年代末至90年代初发生突变.长江流域大部降水减少趋势显著,为18.2~24.7mm/10a;上游(寸滩站,宜昌站)径流减少趋势显著,为9.9~7.2mm/10a,中游(汉口站)和下游(大通站)径流呈微弱下降趋势,为2.9~2.1mm/10a;长江流域上游径流系数增加不显著,中下游径流系数呈显著增加趋势,速率分别0.005/10a和0.005/10a,表明中下游产流能力增强.根据水文参数公式计算,与1951~1969年相比,1970~2008年,降水减少和人类活动引起的下垫面变化对黄河流域径流减少量的贡献率分别为11%和83%;在长江流域,降水减少对径流量变化的贡献占29%,人类活动引起的径流量增加占71%.1980~2008年,黄河流域由于下垫面变化造成径流量减少的比例在兰州、三门峡、花园口、利津分别为97%,83%,83%和91%,降水引起的径流量减少比例分别为3%,17%,17%和9%.长江流域降水减少对寸滩、宜昌、汉口、大通径流量减少的贡献分别为89%,74%,43%和35%,下垫面变化对径流增量的贡献分别为11%,26%,57%和65%.人类活动的作用强度逐年增大,2000年之后,下垫面变化对黄河、长江流域径流变化量的贡献率上升到84%和73%.下垫面变化引起了黄河下游径流减少和长江下游径流增加,在干旱区和湿润区对径流变化的作用相反.造成这一现象的原因是:黄河流域人类的活动用水量的增加直接造成径流减少;长江流域因太阳辐射下降引起实际蒸发量下降,同时湖泊面积减少,下垫面硬化也在一定程度上造成产流能力增加.

References

[1]  5 Liu C, Zheng H. Changes in components of the hydrological cycle in the Yellow River basin during the second half of the 20th century. Hydrol Process, 2004, 18: 2337-2345
[2]  6 Yang D, Li C, Hu H, et al. Analysis of water resources variability in the Yellow River of China during the last half century using historical data. Water Resour Res, 2004, 40: doi: 10.1029/2003WR002763
[3]  7 Xu J X. The water fluxes of the Yellow River to the sea in the past 50 years, in response to climate change and human activities. Environ Manage, 2005, 35: 620-631
[4]  8 Tang Q H, Oki T, Kanae S, et al. A spatial analysis of hydro-climatic and vegetation condition trends in the Yellow River basin. Hydrol Process, 2008, 22: 451-458
[5]  9 Miao C Y, Ni J R, Alistair G L, et al. A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River. Glob Planet Change, 2011, 76: 196-205
[6]  10 Jiang T, Kundzewicz Z W, Su B D. Changes in monthly precipitation and flood hazard in the Yangtze River Basin, China. Int J Climatol, 2008, 28: 1471-1481
[7]  11 Jiang T, Su B, Hartmann H. Temporal and spatial trends of precipitation and river flow in the Yangtze River Basin, 1961-2000. Geomorphology, 2007, 85: 143-154
[8]  12 Xu K , Milliman J D, Xu H. Temporal trend of precipitation and runoff in major Chinese Rivers since 1951. Glob Planet Change, 2010, 73: 219-232
[9]  13 Zhai J Q, Liu B, Hartmann H, et al. Dryness/wetness variations in ten large river basins of China during the first 50 years of the 21st Century. Quat Int, 2010, 226: 101-111
[10]  14 Zhai J Q, Su B D, Krysanova V, et al. Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in ten large regions of China. J Clim, 2010, 23: 649-663
[11]  15 Liu L L, Liu Z F, Ren X Y, et al. Hydrological impacts of climate change in the Yellow River basin for the 21st Century using hydrological model and statistical downscaling model. Quat Int, 2011, 244: 211-220
[12]  16 Zhang H, Wu J W, Zheng Q H, et al. A preliminary study of oasis evolution in the Tarim Basin, Xinjiang, China. J Arid Environ, 2003, 55: 545-553
[13]  17 Lioubimtseva E, Cole R, Adams J M, et al. Impacts of climate and land-cover changes in arid lands of Central Asia. J Arid Environ, 2005, 62: 285-308
[14]  38 王艳君, 姜彤, 刘波. 长江流域实际蒸发量的变化趋势. 地理学报, 2010, 65: 1079-1088
[15]  39 刘敏, 沈彦俊, 曾燕, 等. 近50年中国蒸发皿蒸发量变化趋势及原因. 地理学报, 2009, 64: 259-269
[16]  40 刘健, 张奇, 许崇育, 等. 近50年鄱阳湖流域实际蒸发量的变化及影响因素. 长江流域资源与环境, 2010, 19: 139-145
[17]  41 Yang K, Ye B S, Zhou D G, et al. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim Change, 2011, 109: 517-534
[18]  42 Shi G Y, Hayasaka H, Ohmura A, et al. Data quality assessment and the long-term trend of ground solar radiation in China. J App Met Climat, 2008, 47: 1006-1016
[19]  43 王艳君, 姜彤, 许崇育. 长江流域蒸发皿蒸发量及影响因素变化趋势. 自然资源学报, 2005, 11: 864-870
[20]  44 Zhao S, Fang J, Miao S, et al. The 7-decadedegradation of a large freshwater lake in central Yangtze River, China. Environ Sci Technol, 2005, 39: 431-436
[21]  45 黄群, 姜彤. 近50年来洞庭湖区的内湖变化. 湖泊科学, 2005, 17: 202-206
[22]  46 张毅, 孔祥德, 邓宏兵, 等. 近百年湖北省湖泊演变特征研究. 湿地科学, 2010, 8: 15-20
[23]  47 殷鸿福, 陈国金, 李长安, 等. 长江中游的泥沙淤积问题. 中国科学 D 辑: 地球科学, 2004, 34: 195-209
[24]  48 李丽娟, 姜德娟, 李九一, 等. 土地利用覆被变化的水文效应研究进展. 自然资源学报, 2007, 22: 211-224
[25]  49 徐振辞, 郭永辰. 城市不同下垫面条件的降雨径流模拟试验研究. 南水北调与水利科技, 2007, 5: 64-66
[26]  50 王渺林. 长江上游流域径流变化. 水土保持研究, 2007, 145: 110-115
[27]  18 Zhang Q, Xu C Y, Becker S, et al. Sediment and runoff changes in the Yangtze River basin during past 50 years. J Hydrol, 2006, 331: 511-523
[28]  19 秦年秀, 姜彤, 许崇育. 长江流域径流趋势变化及突变分析. 长江流域资源与环境, 2005, 14: 589-594
[29]  20 叶柏生, 陈鹏, 丁永建, 等. 100多年来东亚地区主要河流径流变化. 冰川冻土, 2008, 30: 556-561
[30]  21 张士锋, 贾绍凤, 刘昌明, 等. 黄河源区水循环变化规律及其影响. 中国科学 E 辑: 技术科学, 2004, 34(增刊Ⅰ): 117-125
[31]  22 Xu C Y, Gong L, Jiang T , et al. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J Hydrol, 2006, 327: 81-93
[32]  23 Ding Y, Yang D Q, Ye B S, et al. Effects of bias correction on precipitation trend over China. J Geophys Res, 2007, 112:13-16 D13116, doi: 10.1029/2006JD007938
[33]  24 徐宗学, 张楠. 黄河流域近50年降水变化趋势分析. 地理研究, 2006, 25: 27-34
[34]  25 徐宗学, 和宛琳. 黄河流域近40年蒸发皿蒸发量变化趋势分析. 水文, 2005, 25: 6-11
[35]  26 徐宗学, 隋彩虹. 黄河流域平均气温变化趋势分析. 气象, 2005, 31: 7-10
[36]  27 徐宗学, 赵芳芳. 黄河流域日照时数变化趋势分析. 资源科学, 2005, 27: 153-159
[37]  28 Hamed K H. Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. J Hydrol, 2009, 368: 143-155
[38]  29 Lettenmaier D P, Wood E F, Wallis J R, et al. Hydroclimatological trends in the continental United States, 1948-88. Climate, 1994, 7: 586-607
[39]  30 Du J, He F, Zhang Z, et al. Precipitation change and human impacts on hydrologic variables in Zhengshui River basin, China. Stoch Environ Res Risk Assess, 2011, 25: 1013-1025
[40]  31 许炯心, 孙季. 近50年来降水变化和人类活动对黄河入海径流通量的影响. 水科学进展, 2003, 14: 690-695
[41]  32 穆兴民, 张秀勤, 高鹏, 等. 双累积曲线方法理论及在水文气象领域应用中应注意的问题. 水文, 2010, 30: 47-51
[42]  33 Wang H J, Yang Z S, Saito Y, et al. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Global Planet Change, 2006, 50: 212-225
[43]  34 Miao C Y, Ni J R, Borthwick A G. Recent changes of water discharge and sediment load in the Yellow River basin, China. Prog Phys Geog, 2010, 34: 541-561
[44]  35 Du Y, Xue H P, Wu S J, et al. Lake area changes in the middle Yangtze region of China over the 20th Century. J Environ Manage, 2011, 92: 1248-1255
[45]  36 丛振涛, 倪广恒, 杨大文, 等. “蒸发悖论”在中国的规律分析. 水科学进展, 2008, 19: 147-152
[46]  37 Gao G, Chen D L, Xu C Y. et al. Trend of estimated actual evapotranpiration over China during 1960-2002. J Geophys Res, 2007, 112, doi: 10.1029/2006JD008010
[47]  1 Zhang Y K, Schilling K E. Increasing streamflow and baseflow in Mississippi River since the 1940s: Effect of land use change. J Hydrol, 2006, 324: 412-422
[48]  2 Piao S, Friedlingstein P, Ciais P, et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc Natl Acad Sci USA, 2007, 104: 15242-15247
[49]  3 Kundzewicz Z W, Nohara D, Jiang T, et al. Discharge of large Asian rivers—Observations and projections. Quat Int, 2009, 208: 4-10
[50]  4 Jiang T, Fischer T, Lu X X, et al. Larger Asian Rivers: Climate change, river flow and watershed management. Quat Int, 2010, 226: 1-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133