全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

再循环陆壳物质对岩石圈地幔的改造:鲁西早白垩世高镁闪长岩中异剥橄榄岩捕虏体证据

, PP. 1179-1194

Keywords: 异剥橄榄岩,岩石成因,再循环陆壳,岩石圈地幔,中生代,华北克拉通

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文报道了鲁西早白垩世高镁闪长岩中异剥橄榄岩捕虏体的岩相学与矿物化学资料,以便揭示异剥橄榄岩的成因和岩石圈地幔的深部过程.岩相学研究表明,异剥橄榄岩捕虏体呈浑圆状产于高镁闪长质侵入体中,大小介于3cm×4cm×5cm~3cm×2cm×1cm,并且橄榄石呈残留孤岛状存在于单斜辉石中.矿物化学研究表明,橄榄石的镁橄榄石分子(Fo)介于89~91,Ni=1414~3629ppm,类似于新生代幔源橄榄岩捕虏体中橄榄石的成分,但略低于早白垩世方辉橄榄岩中橄榄石的成分.橄榄石的δ18O值介于(6.03‰±0.33‰)~(6.82‰±0.35‰)(平均值为(6.5‰±0.4‰)),高于典型幔源橄榄岩中橄榄石的δ18O组成(5.2‰±0.3‰).与晚白垩世和新生代玄武岩中地幔橄榄岩捕虏体里的单斜辉石相比,异剥橄榄岩捕掳体中单斜辉石的Na2O,TiO2和Al2O3含量相对偏低,而CaO含量、Mg#值(91.2~94.1)和Ti/Eu比值(Ti/Eu=2082~2845)明显偏高,但与早白垩世高镁闪长岩中方辉橄榄岩里的单斜辉石成分类似.单斜辉石以较低的稀土元素(REE)丰度、富集轻稀土元素(LREE)的配分型式和强烈亏损高场强元素(如Nb,Ta,Zr和Hf)为特点.此外,异剥橄榄岩的87Sr/86Sr,143Nd/144Nd和187Os/188Os(125Ma)比值分别变化于0.70596~0.70737,0.512181~0.512416和0.12661~0.57650.上述特征表明,异剥橄榄岩为地幔橄榄岩受再循环陆壳物质熔体改造所成.

References

[1]  17 裴福萍, 许文良, 王清海, 等. 鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学——对岩石圈地幔性质的制约. 高校地质学报, 2004, 10: 88-97
[2]  18 许文良, 王冬艳, 王清海, 等. 鲁西中生代闪长岩中两类幔源捕虏体的岩石学和地球化学. 岩石学报, 2003, 19: 623-636
[3]  1 牛耀龄. 板内洋岛玄武岩(OIB)成因的一些基本概念和存在的问题. 科学通报, 2010, 55: 103-114
[4]  2 Pilet S, Hernandez J, Sylvester P, et al. The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth Planet Sci Lett, 2005, 236: 148-166
[5]  3 Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China Craton. Nature, 2004, 432: 892-897
[6]  4 Gao S, Rudnick R L, Xu W L, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett, 2008, 270: 41-53
[7]  5 Zhao G C, Cawood P, Lu L Z. Petrology and P-T history of the Wutai amphibolites: Implications for tectonic evolution of the Wutai complex, China. Precambrian Res, 1999, 93: 181-199
[8]  6 Liu Y S, Gao S, Kelemen P B, et al. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China craton. Geochim Cosmochin Acta, 2008, 72: 2349-2376
[9]  7 从柏林, 王清晨. 大别山-苏鲁超高压变质带研究的最新进展. 科学通报, 1999, 44: 1127-1141
[10]  8 Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth Sci Rev, 2003, 62: 105-161
[11]  9 王清晨, 林伟. 大别山碰撞造山带的地球动力学. 地学前缘, 2002, 9: 257-265
[12]  10 刘福田, 刘建华, 何建坤, 等. 滇西特提斯造山带下扬子地块的俯冲板片. 科学通报, 2000, 45: 79-85
[13]  11 Xu W L, Gao S, Wang Q H, et al. Mesozoic crustal thickening of the eastern North China craton: Evidence from eclogite xenoliths and petrologic implications. Geology, 2006, 34: 721-724
[14]  12 Xu W L, Hergt J M, Gao S, et al. Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth Planet Sci Lett, 2008, 265: 123-137
[15]  13 Xu P F, Zhao D P. Upper-mantle velocity structure beneath the North China craton: Implications for lithospheric thinning. Geophys J Int, 2009, 177: 1279-1283
[16]  14 Yang C H, Xu W L, Yang D B, et al. Petrogenesis of Mesozoic high-Mg diorites in western Shandong: Evidence from chronology and petro-geochemistry. J China Univ Geosci, 2005, 16: 297-308
[17]  15 杨承海, 许文良, 杨德彬, 等. 鲁西上峪辉长-闪长岩的成因: 年代学与岩石地球化学证据. 中国科学D辑: 地球科学, 2008, 38: 44-55
[18]  16 Zhang H F, Sun M, Zhou X H, et al. Mesozoic lithosphere destruction beneath the North China craton: Evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol, 2002, 144: 241-254
[19]  19 许文良, 王冬艳, 高山, 等. 鲁西中生代金岭闪长岩中纯橄岩和辉石岩包体的发现及其意义. 科学通报, 2003, 48: 863-868
[20]  20 Xu W L, Zhou Q J, Pei F P, et al. Recycling of lower continental crust in an intra-continental setting: Mineral chemistry and oxygen isotope insights from websterite xenoliths in the North China Craton. Mineral Mag, 2011, 75: 2197
[21]  21 Zhao G C, Cawood P A, Wilde S A, et al. Metamorphism of basement rocks in the central zone of the North China Craton: Implications for Paleoproterozoic tectonic evolution. Precambrian Res, 2000, 103: 55-88
[22]  22 Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 2001, 107: 45-73
[23]  23 董振信. 鲁中燕山期侵入岩与成矿. 北京: 地质出版社, 1987. 26-74
[24]  24 Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in Eastern China. Earth Planet Sci Lett, 2005, 233: 103-119
[25]  25 Yang D B, Xu W L, Wang Q H, et al. Chronology and geochemistry of Mesozoic granitoids in the Bengbu area, central China: Constraints on the tectonic evolution in the eastern North China Craton. Lithos, 2010, 114: 200-216
[26]  26 许文良, 郑常青, 王冬艳, 等. 辽西阜新中生代粗面玄武岩中地幔和下地壳捕虏体的发现及其地质意义. 地质论评, 1999, 45(增刊): 444-449
[27]  27 韩宗珠, 付强. 青岛和诸城深源脉岩和包体的成因与构造背景. 海洋湖沼通报, 1993, 2: 50-59
[28]  28 鄂莫岚, 赵大升. 中国东部新生代玄武岩及深源岩石包体. 北京: 科学出版社, 1987. 1-490
[29]  29 许文良, 迟效国, 袁朝, 等. 华北地台中部中生代闪长质岩石及深源岩石包体. 北京: 地质出版社, 1993. 1-164
[30]  30 Rudnick R L, Gao S, Ling W L, et al. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos, 2004, 77: 609-637
[31]  31 许文良, 王冬艳, 王清海, 等. 华北地块中东部中生代侵入杂岩中角闪石和黑云母的40Ar/39Ar定年: 对岩石圈减薄时间的制约. 地球化学, 2004, 33: 221-231
[32]  32 Pouchou J L, Pichoir F. A new model for quantitative X-ray microanalysis. Part I. Application to the analysis of homogeneous samples. Rech Aerosp, 1984, 5: 13-38
[33]  33 Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol, 2008, 257: 34-43
[34]  34 Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J Petrol, 2010, 51: 537-571
[35]  35 李献华, 李武显, 王选策, 等. 幔源岩浆在南岭燕山早期花岗岩形成中的作用: 锆石原位Hf-O同位素制约. 中国科学D辑: 地球科学, 2009, 39: 872-887
[36]  36 柳小明. 华北克拉通中生代壳幔交换作用的地球化学研究. 博士学位论文. 西安: 西北大学, 2004. 8-10
[37]  37 Walker R J, Prichard H M, Ishiwatari A, et al. The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromites. Geochim Cosmochim Acta, 2002, 66: 329-345
[38]  38 Shirey S B, Walker R J. Carius tube digestions for low-blank rhenium-osmium analysis. Anal Chem, 1995, 67: 2136-2141
[39]  39 Cohen A S, Waters F J. Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry. Analyt Chim Acta, 1996, 332: 269-275
[40]  40 王冬艳, 许文良, 冯宏, 等. 辽西中生代晚期岩石圈地幔的性质: 来自玄武岩和地幔捕虏体的证据. 吉林大学学报(地球科学版), 2002, 32: 319-324
[41]  41 王微. 华北克拉通东部中新生代岩石圈演化——来自火成岩与深源捕虏体(晶)证据. 博士学位论文. 长春: 吉林大学, 2008. 1-219
[42]  42 路思明, 裴福萍, 许文良, 等. 吉林省辽源晚中生代碱性玄武岩成因及岩石圈地幔性质. 地球科学——中国地质大学学报, 2012, 37, 475-488
[43]  43 许文良, 杨德彬, 裴福萍, 等. 太行山南段符山高镁闪长岩的成因——拆沉陆壳物质熔融的熔体与地幔橄榄岩反应的结果. 岩石学报, 2009, 25: 1947-1961
[44]  44 Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P, eds. Rare Earth Element Geochemistry. New York: Elsevier Science Publishing Company Inc, 1984. 63-114
[45]  45 Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geol Soc Spec Publ, 1989, 42: 313-345
[46]  46 Carswell D A. Mantle derived lherzolite nodules associated with kimberlite, carbonatite and basalt magmatism: A review. Lithos, 1980, 13: 121-138
[47]  47 Mattey D, Lowry D, Macpherson C. Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett, 1994, 128: 231-241
[48]  48 Xu W L, Zhou Q J, Pei F P, et al. Destruction of the North China craton: Delamination or thermal/chemical erosion? Mineral chemistry and oxygen isotope insights from websterite xenoliths. Gandwana Res, 2013, 23, 119-129
[49]  49 Schulze D J, Harte B, Valley J W, et al. Extreme crustal oxygen isotope signatures preserved in coesite in diamond. Nature, 2003, 423: 68-70
[50]  50 郑建平. 中国东部地幔置换作用与中新生代岩石圈减薄. 武汉: 中国地质大学出版社, 1999. 1-127
[51]  51 郑建平, 赵磊. 华北地台金伯利岩地球化学. 见: 池际尚, 路凤香, 主编. 华北地台金伯利岩际古生代岩石圈地幔特征. 北京: 科学出版社, 1996. 133-178
[52]  52 Walker R J, Carlson R W, Shirey S B, et al. Os, Sr, Nd and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of subcontinental mantle. Gemochim Cosmochim Acta, 1989, 53: 1538-1595
[53]  53 Liu J G, Rudnick R L, Walker R J, et al. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: An example from the North China craton. Geochim Cosmochim Acta, 2011, 75, 3881-3902
[54]  54 Thompson R N, Gibson S A. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature, 2000, 407: 502-506
[55]  55 Kelemen P B, Dick J B, Quick J E. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 1992, 358: 635-641
[56]  56 Rudnick R L, Mcdonough W F, Chappell B W. Carbonatite metasomatism in the northern Tanzanian mantle: Petrographic and geochemical characteristics. Earth Planet Sci Lett, 1993, 114: 463-475
[57]  57 Klemme S, van der Laan S R, Foley S F, et al. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet Sci Lett, 1995, 133: 439-448
[58]  58 Neumann E R, Wulff-Pedersen E. The origin of highly silicic glass in mantle xenoliths from the Canary Islands. J Petrol, 1997, 38: 1513-1539
[59]  59 Shaw C S J. Dissolution of orthopyroxene in basaltic magma between 0.4 and 2 Gpa: Further implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths. Contrib Mineral Petrol, 1999, 135: 114-132
[60]  60 Coltorti M, Bonadiman C, Hinton R W, et al. Carbonatite metasomatism of the oceanic upper mantle: Evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol, 1999, 40: 133-165
[61]  61 Irving A J. Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. Am J Sci, 1980, 280A: 389-426
[62]  62 Green D H, Wallace M E. Mantle metasomatism by ephemeral carbonatite melts. Nature, 1988, 336: 459-462
[63]  63 Zinngrebe F, Foley S F. Metasomatism in mantle xenoliths from Gees, West Eifel, Germany: Evidence for the genesis of calc-alkaline glasses and metasomatic Ca-enrichment. Contrib Mineral Petrol, 1995, 122: 79-96
[64]  64 Xu Y G, Mercier J C, Menzies M A, et al. K-rich glass-bearing wehrlite xenoliths from Yitong, Northeastern China: Petrological and chemical evidence for mantle metasomatism. Contrib Mineral Petrol, 1996, 125: 406-420
[65]  65 Gorring M, Kay S M. Carbonatite metasomatized peridotite xenoliths from southern Patagonia: Implications for lithospheric processes and Neogene plateau magmatism. Contrib Mineral Petrol, 2000, 140: 55-72
[66]  66 Beard A D, Downes H, Mason P R D, et al. Depletion and enrichment processes in the lithospheric mantle beneath the Kola Peninsula (Russia): Evidence from spinel lherzolite and wehrlite xenoliths. Lithos, 2007, 94: 1-24
[67]  67 于宋月, 徐义刚, 黄小龙, 等. 吉林双辽地区橄榄岩包体中熔体-岩石作用特征及其对地幔交代作用的启示. 岩石矿物学杂志, 2007, 23: 213-222
[68]  68 Frey F A, Prinz M. Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett. 1978, 38: 129-176
[69]  69 Roden M F, Shimizu N. Ion microprobe analyses bearing on the composition of the upper mantle beneath the Basin and Range and Colorado plateau provinces. J Geophys Res, 1993, 98: 14091-14108
[70]  70 Ramos F C, Wolff J A, Tollstrup L. Measuring 87Sr/86Sr variation in minerals and groundmass from basalts using LA-MC-ICPMS. Chem Geol. 2004, 211: 135-158
[71]  71 Xu W L, Yang D B, Gao S, et al. Geochemistry of peridotite xenoliths in Early Cretaceous high-Mg# diorites from the central orogenic block of the North China craton: The nature of Mesozoic lithospheric mantle and constraints on lithospheric thinning. Chem Geol, 2010, 270: 257-273
[72]  72 Xu W L, Wang C G, Wang F, et al. Dunite xenoliths and olivine xenocrysts in gabbro from southern Taihang Mountains: Characteristics of Mesozoic lithospheric mantle in central China. J Earth Sci, 2010, 21: 692-710
[73]  73 Ringwood A E, Green D H. An experimental investigation of the gabbro-eclogite transformation and some geophysical implications. Tectonophysics, 1966, 3: 383-427
[74]  74 Kelemen P B. Genesis of high Mg# andesites and the continental crust. Contrib Mineral Petrol, 1995, 120: 1-19
[75]  75 Liu Y S, Gao S, Lee C T, et al. Melt-peridotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett, 2005, 234: 39-57
[76]  76 Sobolev A V, Hofmann A W, Nikogosian I K. Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa Lavas. Nature, 2000, 404: 986-990
[77]  77 Prouteau G, Scaillet B, Pichavant M, et al. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 2001, 410: 197-200
[78]  78 王清海, 许文良, 杨德彬, 等. 华北地块东南缘中生代侵入杂岩中所含榴辉岩类包体矿物微量元素地球化学特征及其意义. 岩石学报, 2011, 27: 1131-1150
[79]  79 Yang D B, Xu W L, Pei F P, et al. Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: Constraints from Sr-Nd-Pb isotopes in Mesozoic mafic igneous rocks. Lithos, 2012, 136-139: 246-260
[80]  80 Pei F P, Xu W L, Yang D B, et al. Geochronology and geochemistry of Mesozoic mafic-ultramafic complexes in the southern Liaoning and southern Jilin provinces, NE China: Constraints on the spatial extent of destruction of the North China craton. J Asian Earth Sci, 2011, 40: 636-650

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133