2 Pilet S, Hernandez J, Sylvester P, et al. The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth Planet Sci Lett, 2005, 236: 148-166
[5]
3 Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China Craton. Nature, 2004, 432: 892-897
[6]
4 Gao S, Rudnick R L, Xu W L, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett, 2008, 270: 41-53
[7]
5 Zhao G C, Cawood P, Lu L Z. Petrology and P-T history of the Wutai amphibolites: Implications for tectonic evolution of the Wutai complex, China. Precambrian Res, 1999, 93: 181-199
[8]
6 Liu Y S, Gao S, Kelemen P B, et al. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China craton. Geochim Cosmochin Acta, 2008, 72: 2349-2376
8 Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth Sci Rev, 2003, 62: 105-161
11 Xu W L, Gao S, Wang Q H, et al. Mesozoic crustal thickening of the eastern North China craton: Evidence from eclogite xenoliths and petrologic implications. Geology, 2006, 34: 721-724
[14]
12 Xu W L, Hergt J M, Gao S, et al. Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth Planet Sci Lett, 2008, 265: 123-137
[15]
13 Xu P F, Zhao D P. Upper-mantle velocity structure beneath the North China craton: Implications for lithospheric thinning. Geophys J Int, 2009, 177: 1279-1283
[16]
14 Yang C H, Xu W L, Yang D B, et al. Petrogenesis of Mesozoic high-Mg diorites in western Shandong: Evidence from chronology and petro-geochemistry. J China Univ Geosci, 2005, 16: 297-308
16 Zhang H F, Sun M, Zhou X H, et al. Mesozoic lithosphere destruction beneath the North China craton: Evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol, 2002, 144: 241-254
20 Xu W L, Zhou Q J, Pei F P, et al. Recycling of lower continental crust in an intra-continental setting: Mineral chemistry and oxygen isotope insights from websterite xenoliths in the North China Craton. Mineral Mag, 2011, 75: 2197
[21]
21 Zhao G C, Cawood P A, Wilde S A, et al. Metamorphism of basement rocks in the central zone of the North China Craton: Implications for Paleoproterozoic tectonic evolution. Precambrian Res, 2000, 103: 55-88
[22]
22 Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 2001, 107: 45-73
[23]
23 董振信. 鲁中燕山期侵入岩与成矿. 北京: 地质出版社, 1987. 26-74
[24]
24 Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in Eastern China. Earth Planet Sci Lett, 2005, 233: 103-119
[25]
25 Yang D B, Xu W L, Wang Q H, et al. Chronology and geochemistry of Mesozoic granitoids in the Bengbu area, central China: Constraints on the tectonic evolution in the eastern North China Craton. Lithos, 2010, 114: 200-216
30 Rudnick R L, Gao S, Ling W L, et al. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos, 2004, 77: 609-637
32 Pouchou J L, Pichoir F. A new model for quantitative X-ray microanalysis. Part I. Application to the analysis of homogeneous samples. Rech Aerosp, 1984, 5: 13-38
[33]
33 Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol, 2008, 257: 34-43
[34]
34 Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J Petrol, 2010, 51: 537-571
37 Walker R J, Prichard H M, Ishiwatari A, et al. The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromites. Geochim Cosmochim Acta, 2002, 66: 329-345
[38]
38 Shirey S B, Walker R J. Carius tube digestions for low-blank rhenium-osmium analysis. Anal Chem, 1995, 67: 2136-2141
[39]
39 Cohen A S, Waters F J. Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry. Analyt Chim Acta, 1996, 332: 269-275
44 Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P, eds. Rare Earth Element Geochemistry. New York: Elsevier Science Publishing Company Inc, 1984. 63-114
[45]
45 Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geol Soc Spec Publ, 1989, 42: 313-345
[46]
46 Carswell D A. Mantle derived lherzolite nodules associated with kimberlite, carbonatite and basalt magmatism: A review. Lithos, 1980, 13: 121-138
[47]
47 Mattey D, Lowry D, Macpherson C. Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett, 1994, 128: 231-241
[48]
48 Xu W L, Zhou Q J, Pei F P, et al. Destruction of the North China craton: Delamination or thermal/chemical erosion? Mineral chemistry and oxygen isotope insights from websterite xenoliths. Gandwana Res, 2013, 23, 119-129
[49]
49 Schulze D J, Harte B, Valley J W, et al. Extreme crustal oxygen isotope signatures preserved in coesite in diamond. Nature, 2003, 423: 68-70
52 Walker R J, Carlson R W, Shirey S B, et al. Os, Sr, Nd and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of subcontinental mantle. Gemochim Cosmochim Acta, 1989, 53: 1538-1595
[53]
53 Liu J G, Rudnick R L, Walker R J, et al. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: An example from the North China craton. Geochim Cosmochim Acta, 2011, 75, 3881-3902
[54]
54 Thompson R N, Gibson S A. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature, 2000, 407: 502-506
[55]
55 Kelemen P B, Dick J B, Quick J E. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 1992, 358: 635-641
[56]
56 Rudnick R L, Mcdonough W F, Chappell B W. Carbonatite metasomatism in the northern Tanzanian mantle: Petrographic and geochemical characteristics. Earth Planet Sci Lett, 1993, 114: 463-475
[57]
57 Klemme S, van der Laan S R, Foley S F, et al. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet Sci Lett, 1995, 133: 439-448
[58]
58 Neumann E R, Wulff-Pedersen E. The origin of highly silicic glass in mantle xenoliths from the Canary Islands. J Petrol, 1997, 38: 1513-1539
[59]
59 Shaw C S J. Dissolution of orthopyroxene in basaltic magma between 0.4 and 2 Gpa: Further implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths. Contrib Mineral Petrol, 1999, 135: 114-132
[60]
60 Coltorti M, Bonadiman C, Hinton R W, et al. Carbonatite metasomatism of the oceanic upper mantle: Evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol, 1999, 40: 133-165
[61]
61 Irving A J. Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. Am J Sci, 1980, 280A: 389-426
[62]
62 Green D H, Wallace M E. Mantle metasomatism by ephemeral carbonatite melts. Nature, 1988, 336: 459-462
[63]
63 Zinngrebe F, Foley S F. Metasomatism in mantle xenoliths from Gees, West Eifel, Germany: Evidence for the genesis of calc-alkaline glasses and metasomatic Ca-enrichment. Contrib Mineral Petrol, 1995, 122: 79-96
[64]
64 Xu Y G, Mercier J C, Menzies M A, et al. K-rich glass-bearing wehrlite xenoliths from Yitong, Northeastern China: Petrological and chemical evidence for mantle metasomatism. Contrib Mineral Petrol, 1996, 125: 406-420
[65]
65 Gorring M, Kay S M. Carbonatite metasomatized peridotite xenoliths from southern Patagonia: Implications for lithospheric processes and Neogene plateau magmatism. Contrib Mineral Petrol, 2000, 140: 55-72
[66]
66 Beard A D, Downes H, Mason P R D, et al. Depletion and enrichment processes in the lithospheric mantle beneath the Kola Peninsula (Russia): Evidence from spinel lherzolite and wehrlite xenoliths. Lithos, 2007, 94: 1-24
68 Frey F A, Prinz M. Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett. 1978, 38: 129-176
[69]
69 Roden M F, Shimizu N. Ion microprobe analyses bearing on the composition of the upper mantle beneath the Basin and Range and Colorado plateau provinces. J Geophys Res, 1993, 98: 14091-14108
[70]
70 Ramos F C, Wolff J A, Tollstrup L. Measuring 87Sr/86Sr variation in minerals and groundmass from basalts using LA-MC-ICPMS. Chem Geol. 2004, 211: 135-158
[71]
71 Xu W L, Yang D B, Gao S, et al. Geochemistry of peridotite xenoliths in Early Cretaceous high-Mg# diorites from the central orogenic block of the North China craton: The nature of Mesozoic lithospheric mantle and constraints on lithospheric thinning. Chem Geol, 2010, 270: 257-273
[72]
72 Xu W L, Wang C G, Wang F, et al. Dunite xenoliths and olivine xenocrysts in gabbro from southern Taihang Mountains: Characteristics of Mesozoic lithospheric mantle in central China. J Earth Sci, 2010, 21: 692-710
[73]
73 Ringwood A E, Green D H. An experimental investigation of the gabbro-eclogite transformation and some geophysical implications. Tectonophysics, 1966, 3: 383-427
[74]
74 Kelemen P B. Genesis of high Mg# andesites and the continental crust. Contrib Mineral Petrol, 1995, 120: 1-19
[75]
75 Liu Y S, Gao S, Lee C T, et al. Melt-peridotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett, 2005, 234: 39-57
[76]
76 Sobolev A V, Hofmann A W, Nikogosian I K. Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa Lavas. Nature, 2000, 404: 986-990
[77]
77 Prouteau G, Scaillet B, Pichavant M, et al. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 2001, 410: 197-200
79 Yang D B, Xu W L, Pei F P, et al. Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: Constraints from Sr-Nd-Pb isotopes in Mesozoic mafic igneous rocks. Lithos, 2012, 136-139: 246-260
[80]
80 Pei F P, Xu W L, Yang D B, et al. Geochronology and geochemistry of Mesozoic mafic-ultramafic complexes in the southern Liaoning and southern Jilin provinces, NE China: Constraints on the spatial extent of destruction of the North China craton. J Asian Earth Sci, 2011, 40: 636-650