145 Lin J, Li J, Ko Y K, et al. Investigation of thickness and electrical resistivity of the current sheets in solar eruptions. Astrophys J, 2009, 693: 1666-1677
[2]
146 Zhou G P, Xiao C J, Wang J X, et al. A current sheet traced from the Sun to interplanetary space. Astron Astrophys, 2011, 525: 156-162
[3]
148 Chen P F, Wu Y. First evidence of coexisting EIT wave and coronal moreton wave from SDO/AIA observations. Astrophys J, 2011, 732: L20-L24
[4]
149 Chen P F, Wu S T, Shibata K, et al. Evidence of EIT and moreton waves in numerical simulations. Astrophys J, 2002, 572: L99-L102
[5]
150 Chen F, Ding M D, Chen P F, et al. Spectroscopic analysis of interaction between an extreme-ultraviolet imaging telescope wave and a coronal upflow region. Astrophys J, 2011, 740: 116-123
[6]
151 Dai Y, Auchere F, Vial J C, et al. Large-scale extreme-ultraviolet disturbances associated with a limb coronal mass ejection. Astrophys J, 2010, 708: 913-919
[7]
152 Chen F, Ding M D, Chen P F. Spectroscopic analysis of an EIT wave/dimming observed by hinode/EIS. Astrophys J, 2010, 720: 1254-1261
[8]
153 Yang H Q, Chen P F. The dependence of the EIT wave velocity on the magnetic field strength. Sol Phys, 2010, 266: 59-69
[9]
154 Shen Y, Liu Y. Simultaneous observations of a large-scale wave event in the solar atmosphere: From photosphere to corona. Astrophys J, 2012, 752: L23-L29
[10]
155 Shen Y, Liu Y. Evidence for the wave nature of an extreme ultraviolet wave observed by the atmospheric imaging assembly on board the solar dynamics observatory. Astrophys J, 2012, 754: 7-16
[11]
156 Li T, Zhang J, Yang S, et al. Kinematics and amplitude evolution of global coronal extreme ultraviolet waves. Res Astron Astrophys, 2012, 12: 104-114
[12]
157 Ma S, WillsDavey M J, Lin J, et al. A new view of coronal waves from STEREO. Astrophys J, 2009, 707: 503-509
[13]
158 Ma S, Raymond J C, Golub L, et al. Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA. Astrophys J, 2011, 738: 160-169
[14]
159 Li T, Zhang J, Yang S, et al. SDO/AIA observations of secondary waves generated by interaction of the 2011 June 7 global euv wave with solar coronal structures. Astrophys J, 2012, 746: 13-21
[15]
160 Cheng X, Zhang J, Olmedo O, et al. Investigation of the formation and separation of an extreme-ultraviolet wave from the expansion of a coronal mass ejectio. Astrophys J, 2012, 745: L5-L9
[16]
161 Wang H, Shen C, Lin J. Numerical experiments of wave-like phenomena caused by the disruption of an unstable magnetic configuration. Astrophys J, 2009, 700: 1716-1731
[17]
167 Wu Y, Chen P F. The inversion of the real kinematic properties of coronal mass ejections by forward modeling. Res Astron Astrophys, 2011, 11: 237-244
[18]
168 Feng L, Inhester B, Wei Y, et al. Morphological evolution of a three-dimensional coronal mass ejection cloud reconstructed from three viewpoints. Astrophys J, 2012, 751: 18-29
[19]
169 Shen C, Wang Y, Gui B, et al. Kinematic evolution of a slow CME in corona viewed by STEREO-B on 8 October 2007. Sol Phys, 269: 389-400
[20]
170 Gui B, Shen C, Wang Y, et al. Quantitative analysis of CME deflections in the corona. Sol Phys, 2011, 271: 111-139
[21]
171 Wang Y M, Zhang J, Shen C L. An analytical model probing the internal state of coronal mass ejections based on observations of their expansions and propagations. J Geophys Res, 2009, 114: A10104
[22]
172 Zhang Q, Guo Y, Chen P, et al. Why are halo coronal mass ejections faster? Res Astron Astrophys, 2010, 10: 461-472
[23]
173 Wang Y, Chen C, Gui B, et al. Statistical study of coronal mass ejection source locations: Understanding CMEs viewed in coronagraphs. J Geophys Res, 2011, 116: A04104
[24]
174 Wang Y M, Wang S, Ye P Z. Multiple magnetic clouds in interplanetary space. Sol Phys, 2002, 211: 333-344
[25]
175 Wang Y M, Ye P Z, Wang S. Multiple magnetic clouds: Several examples during March-April, 2001. J Geophys Res, 2003, 108(A10): 1370
[26]
176 Shen F, Feng X S, Wang Y M, et al. 3D MHD simulations of two CMEs’ propagation and interaction using a successive magnetized plasma blobs model. J Geophys Res, 2011, 116: A09103
[27]
177 Shen C L, Wang Y M, Wang S, et al. Super-elastic collision of large-scale magnetized plasmoids in the heliosphere. Nat Phys, 2012, 8: 923-928
[28]
178 Wang M, Gao G N, Xie R X, et al. Possible radio precursors/signatures of the CMEs onset: radio type III bursts and fine structures in the centimeter-metric wavelength region. Res Astron Astrophys, 2011, 11: 607-616
[29]
179 Li C, Dai Y, Vial J, et al. Solar source of energetic particles in interplanetary space during the 2006 December 13 event. Astron Astrophys, 2009, 503: 1013-1021
[30]
185 Wang Y, Qin G, Zhang M. Effects of perpendicular diffusion on energetic particles accelerated by the interplanetary coronal mass ejection shock. Astrophys J, 2012, 752: 37-44
[31]
189 Yan Y, Deng Y, Karlicky M, et al. The magnetic rope structure and associated energetic processes in the 2000 July 14 solar flare. Astrophys J, 2001, 551: L115-L119
[32]
190 Guo Y, Ding M D, Wiegelmann T, et al. 3D magnetic field configuration of the 2006 December 13 flare extrapolated with the optimization method. Astrophys J, 2008, 679: 1629-1635
[33]
191 Xu Z, Lagg A, Solanki S, et al. Magnetic fields of an active region filament from full stokes analysis of Si I 1082.7 nm and He I 1083.0 nm. Astrophys J, 2012, 749: 138-148
[34]
192 Xu Z, Lagg A, Solanki S. Magnetic structures of an emerging flux region in the solar photosphere and chromospheres. Astron Astrophys, 2010, 520: 77-89
[35]
193 Liu Y, Jiang Y C, Ji H S, et al. Observational evidence of a magnetic flux rope eruption associated with the X3 flare on 2002 July 15. Astrophys J, 2003, 593: L137-L140
[36]
66 Ding M, Liu Y, Yeh C, et al. Interpretation of the infrared continuum in a solar white-light flare. Astron Astrophys, 2003, 403: 1151-1156
[37]
67 Chen Q R, Ding M D. Footpoint motion of the continuum emission in the 2002 September 30 white-light flare. Astrophys J, 2006, 641: 1217-1221
[38]
68 Cheng J X, Ding M D, Carlsson M. Radiative hydrodynamic simulation of the continuum emission in solar white-light flares. Astrophys J, 2010, 711: 185-191
[39]
69 Jin M, Ding M D. Correlation and asymmetry between solar flare hard X-ray footpoints: A statistical study. Astron Astrophys, 2007, 471: 705-709
[40]
70 Ning Z. Different behaviors between microwave and hard X-ray spectral hardness in two solar flares. Astrophys J, 2007, 671: 197-200
[41]
71 Ning Z. Microwave and hard X-ray spectral evolution for the 13 December 2006 solar flare. Sol Phys, 2008, 247: 53-62
[42]
72 Li Y, Gan W. On integrated hard X-ray broken-up spectra of solar flares. Sol Phys, 2011, 269: 59-66
[43]
73 Shao C, Huang G. Hard-soft-hard flare spectra and their energy dependence in spectral evolution of a solar hard X-ray flare. Astrophys J, 2009, 694: 162-165
[44]
74 Shao C, Huang G. Comparative study of solar HXR flare spectra in looptop and footpoint sources. Astrophys J, 2009, 691: 299-305
[45]
75 Huang G, Nakajima H. Statistical analysis of flaring loops observed by nobeyama radioheliograph. I. Comparison of looptop and footpoints. Astrophys J, 2009, 696: 136-142
[46]
76 Huang G, Nakajima H. Statistics of flaring loops observed by nobeyama radioheliograph. II. Spectral evolution. Astrophys J, 2009, 702: 19-26
[47]
77 Tan B, Zhang Y, Tan C, et al. Microwave quasi-periodic pulsations in multi-timescales associated with a solar flare/CME event. Astrophys J, 2010, 723: 25-39
[48]
78 Li Y P, Gan W Q. Observational studies of the X-ray quasi-periodic oscillations of a solar flare. Sol Phys, 2008, 247: 77-85
[49]
79 Tan B L, Yan Y H, Tan C M, et al. The microwave pulsations and the tearing modes in the current-carrying flare loops. Astrophys J, 2007, 671: 964-972
[50]
80 Tan B, Tan C. Microwave quasi-periodic pulsation with millisecond bursts in a solar flare on 2011 August 9. Astrophys J, 2012, 749: 28-35
[51]
81 Huang J, Yan Y H, Liu Y Y. A study of solar radio bursts with fine structures during flare/CME events. Sol Phys, 2008, 253: 143-160
[52]
82 Huang J, Yan Y, Liu, Y. An analysis of solar radio burst events on December 1, 2004. Adv Space Res, 2007, 39: 1439-1444
[53]
83 Chen W, Gan W. The calculation of solar gamma-rays by TALYS. Acta Astronom Sin, 2011, 36: 49-55
[54]
84 Li Y, Gan W, Su Y. Double hard X-ray peaks in RHESSI flares as evidence of chromospheric evaporation and implications for modifying the Neupert effect. Res Astron Astrophys, 2009, 9: 1155-1165
[55]
85 Ning Z. RHESSI observations of the Neupert effect in three solar flares. Sol Phys, 2008, 248: 99-111
[56]
86 Ning Z, Cao W, Huang J, et al. Evidence of chromospheric evaporation in the 2004 December 1 solar flare. Astrophys J, 2009, 699: 15-22
[57]
87 Li Y, Ding M D. Different Patterns of chromospheric evaporation in a flaring region observed with hinode/EIS. Astrophys J, 2011, 727: 98-104
[58]
88 Liu W J, Chen P F, Ding M D, et al. Energy spectrum of the electrons accelerated by a reconnection electric field: Exponential or power law? Astrophys J, 2009, 690: 1633-1638
[59]
89 Wang X, Yan Y H. Monte carlo simulations of a diffusive shock with multiple scattering angular distributions. Astron Astrophys, 2011, 530: 92-100
[60]
90 Ning Z J, Ding M D, Qiu K P, et al. A complicated solar eruption event on 2003 October 26 solar flare. ApSS, 2008, 315: 45-51
[61]
91 Wang J, Li W, Denker C, et al. Minifilament eruption on the quiet Sun. I. Observations at Halpha central line. Astrophys J, 2000, 530: 1071-1084
[62]
92 Hong J, Jiang Y, Zheng R, et al. A micro coronal mass ejection associated blowout Extreme-ultraviolet Jet. Astrophys J, 2011, 738: L20-L25
[63]
93 Yang J, Jiang Y, Yang B, et al. A blowout surge from the eruption of a miniature filament confined by large coronal loops. New Astron, 2012, 17: 732-738
[64]
94 Zheng R, Jiang Y, Hong J, et al. A possible detection of a fast-mode extreme ultraviolet wave associated with a mini coronal mass ejection observed by the solar dynamics observatory. Astrophys J, 2011, 739: 39-45
[65]
95 Zheng R, Jiang Y, Yang J, et al. An extreme ultraviolet wave associated with a micro-sigmoid eruption. Astrophys J, 2012, 753: 29-35
[66]
96 Zheng R, Jiang Y, Yang J, et al. A fast propagating extreme-ultraviolet wave associated with a mini-filament eruption. Astrophys J, 2012, 753: 112-119
[67]
97 Zheng R, Jiang Y, Yang J, et al. An extreme ultraviolet wave associated with a micro-sigmoid eruption. Astrophys J, 2012, 747: 67-76
[68]
98 Liu Y. A study of surges: II. On the relationship between chromospheric surges and coronal mass ejections. Sol Phys, 2008, 249: 75-84
[69]
112 Ning Z. RHESSI microflares with quiet microwave emission. Astrophys J, 2008, 686: 674-685
[70]
113 Wang J, Shi Z. The flare-associated magnetic changes in an active region. II—Flux emergence and cancellation. Sol Phys, 1993, 143: 119-139N
[71]
114 Cao W, Ning Z, Goode P R, et al. Evidence of filament upflows originating from intensity oscillations on the solar surface. Astrophys J, 2010, 719: L95
[72]
115 Deng Y, LinY, Schmieder B, et al. Filament activation and magnetic reconnection. Sol Phys, 2002, 209: 153-170
[73]
116 Guo J, Liu Y, Zhang H Q, et al. A flux rope eruption triggered by jets. Astrophys J, 2010, 711: 1057-1061
[74]
117 Zhang J, Yang S H, Jin C L. Interaction between granulation and small-scale magnetic flux observed by Hinode. Res Astron Astrophys, 2009, 9: 921-932
[75]
126 Wang J X, Zhang Y Z, Zhou G P, et al. Is there more global solar activity on the Sun? Proc Int Astron Union, 2010, 264: 251-256
[76]
127 Jiang Y C, Shen Y D, Bi Y, et al. Magnetic interaction: A transequatorial jet and interconnecting loops. Astrophys J, 2008, 677: 699-703
[77]
128 Zhang Y Z, Wang, J X, Attrill G D R, et al. Coronal magnetic connectivity and EUV dimmings. Sol Phys, 2007, 241: 329-349
[78]
130 Zhou G P, Wang, J X, Wang Y M, et al. Quasi-simultaneous flux emergence in the events of October-November 2003. Sol Phys, 2007, 244: 13-24
[79]
147 Chen P F. The relation between EIT waves and coronal mass ejections. Astrophys J, 2009, 698: L112-L115
[80]
162 Jin M, Ding M D, Chen P F, et al. Coronal mass ejection induced outflows observed with hinode/EIS. Astrophys J, 2009, 702: 27-38
[81]
163 Huang J, Démoulin P, Pick M, et al. Initiation and early development of the 2008 April 26 coronal mass ejection. Astrophys J, 2011, 729: 107-116
[82]
164 Chen A Q, Zong W G. Relationship between CME velocities and X-ray fluxes of associated flares. Res Astron Astrophys, 2009, 9: 470-474
[83]
165 Zhou G P, Wang J X, Zhang J, et al. Two successive coronal mass ejections driven by the kink and drainage instabilities of an eruptive prominence. Astrophys J, 2006, 651: 1238-1244
[84]
166 Cheng X, Zhang J, Ding M D, et al. A statistical study of the post-impulsive-phase acceleration of flare-associated coronal mass ejections. Astrophys J, 2010, 712: 752-760
[85]
180 Li C, Owen C J, Matthews S A, et al. Major electron events and coronal magnetic configurations of the related solar active regions. Astrophys J, 2010, 720: L36-L40
[86]
181 Shen C, Wang Y, Ye P, et al. Strength of coronal mass ejection-driven shocks near the sun and their importance in predicting solar energetic particle events. Astrophys J, 2007, 670: 849-856
[87]
182 Shen C, Wang Y, Ye P, et al. Enhancement of solar energetic particles during a shock magnetic cloud interacting complex structure. Sol Phys, 2008, 252: 409-418
[88]
183 Shen C L, Yao J, Wang Y M, et al. Influence of coronal holes on CMEs in causing SEP events. Res Astron Astrophys, 2010, 10: 1049-1060
[89]
184 Qin G, He H Q, Zhang M. An effect of perpendicular diffusion on the anisotropy of solar energetic particles from unconnected sources. Astrophys J, 2011, 738: 28-33
[90]
186 Wang R G, Wang J X. Investigation of the cosmic ray ground level enhancements during solar cycle 23. Adv Space Res, 2006, 38: 489-492
[91]
187 Wang R G, Wang J X. Spectra and solar energetic protons over 20 GeV in Bastille Day event. Astropart Phys, 2006, 25: 41-46
[92]
188 Wang R G. Did the 2000 July 14 solar flare accelerate protons to 40 GeV? Astropart Phys, 2009, 31: 149-155
[93]
228 Li K J, Gao P X, Li Q X, et al. Cyclical behavior of CMEs. Sol Phys, 2009, 257: 149-154
[94]
229 Zhang L, Wang H N, Du Z L, et al. Long-term behavior of active longitudes for solar X-ray flares. Astron Astrophys, 2007, 471: 711-716
[95]
230 Zhang L, Cui Y M, He Y L, et al. Longitudinal distribution of major solar flares during 1975-2005. Adv Space Res, 2007, 40: 970-975
[96]
232 Jiang J, Wang J X. A dynamo model for axisymmetric and non-axisymmetric solar magnetic fields. Mon Not Roy Astron Soc, 2007, 377: 711-718
[97]
233 Tan B. Multi-timescale solar cycles and possible implications. Astrophys Space Sci, 2011, 332: 65-72
[98]
256 Wang H N, Cui Y M, He H. A logistic model for magnetic energy storage in solar active regions. Res Astron Astrophys, 2009, 9: 687-693
[99]
257 Yu D R, Huang X, Hu Q H, et al. Short-term solar flare prediction using multiresolution predictors. Astrophys J, 2010, 709: 321-326
[100]
258 Yu D R, Huang X, Wang H N, et al. Short-term solar flare prediction using a sequential supervised learning method. Sol Phys, 2009, 255: 91-105
[101]
259 Yu D R, Huang X, Wang H N, et al. Short-term solar flare level prediction using a bayesian network approach. Astrophys J, 2010, 710: 869-877
[102]
260 Cui Y M, Li R, Zhang L Y, et al. Correlation between solar flare productivity and photospheric magnetic field properties I. Sol Phys, 2006, 237: 45-59
[103]
261 Cui Y M, Li R, Wang H N, et al. Correlation between solar flare productivity and photospheric magnetic field properties II. Magnetic gradient and magnetic shear. Sol Phys, 2007, 242: 1-2
[104]
262 Cui Y M. Solar flare forecasting model supported with artificial neural network techniques. Adv Space Res, 2008, 42: 1464-1468
[105]
1 Wang H N, Ai G X, Wang J X. Solar electromagnetic storm. Space Weather, 2012, 9: 8-9
[106]
2 Carrington R C C. Description of a singular appearance seen in the Sun on September 1, 1859. Mon Not Roy Astron Soc, 1860, 20: 13-15
[107]
3 Hodgson R. On a curious appearance seen in the Sun. Mon Not Roy Astron Soc, 1980, 20: 15-19
[108]
4 Fan Y H. Magnetic fields in the solar convection zone. Living Rev Solar Phys, 2004, 1: 1-74
[109]
5 Wang J X. Studies of solar activity from a magnetohydrodynamical point of view to a plasma perspective. Chin Sci Bull, 2012, 57: 1362-1369
[110]
6 Zirin H. Astrophysics of the Sun. Cambridge: Cambridge University Press, 1988
[111]
7 LivI S H, Wang J, Martin S F. The cancellation of magnetic flux. I—On the quiet sun. Aust J Phys, 1985, 38: 855-928
[112]
8 Martin S F, Livi S H, Wang J. The cancellation of magnetic flux. II—In a decaying active region. Aust J Phys, 1985, 38: 929-959
[113]
9 Hagyard M J, Teuber D, West E A, et al. Quantitative study relating observed shear in photospheric magnetic fields to repeated flaring. Sol Phys, 1984, 91: 115-125
[114]
10 Wang J, Shi Z, Wang H, et al. Flares and the magnetic non-potentiality. Astrophys J, 1996, 466: 861-878
[115]
11 Domingo V, Fleck B, Poland A I. The SOHO mission: An Overview. Sol Phys, 1995, 162: 1-37
[116]
12 Brueckner G E, Howard R A, Koomen M J, et al. The large angle spectroscopic coronagraph (LASCO). Sol Phys, 1995, 162: 357-402
[117]
13 Gopalswamy N. Coronal mass ejections of solar cycle 23. J Astrophys Astron, 2006, 27: 243-254
[118]
14 Delaboudinière J P, Artzner G E, Brunaud J, et al. EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Sol Phys, 1995, 162: 291-312
[119]
15 Thompson B J, Gurman J B, Neupert W M, et al. SOHO/EIT observations of the 1997 April 7 coronal transient: Possible evidence of coronal moreton waves. Astrophys J, 1999, 517: L151-L154
[120]
40 Yan X, Qu Z, Xu C, et al. The causality between the rapid rotation of a sunspot and an X3.4 flar. Res Astron Astrophys, 2009, 9: 596-602
[121]
55 Ji H S, Wang H M, Goode P R, et al. Traces of the dynamic current sheet during a solar flare. Astrophys J, 2004, 607: L55-L58
[122]
56 Li Y P, Gan W Q. The shrinkage of flare radio loops. Astrophys J, 2005, 629: L137-L139
[123]
57 Ji H, Huang G, Wang H, et al. Converging motion of Hα conjugate kernels: The signature of fast relaxation of a sheared magnetic field. Astrophys J, 2006, 636: L173-L176
[124]
58 Ji H, Wang H, Liu C, et al. A Hard X-Ray Sigmoidal Structure during the Initial Phase of the 2003 October 29 X10 Flare. Astrophys J, 2008, 680: 734-739
[125]
59 Shen J, Zhou T, Ji H, et al. Early abnormal temperature structure of X-Ray loop-top source of solar flares. Astro J Lett, 2008, 686: L37-L40
[126]
60 Zhou T, Ji H. A comparison between magnetic shear and flare shear in a well-observed M-class flare. Res Astron Astrophys, 2009, 9: 323-332
[127]
61 Ji H, et al. The relaxation of sheared magnetic fields: A contracting process. Astrophys J, 2007, 660: 893-900
[128]
62 Su Y, Golub L, Ballegooijen A A. A statistical study of shear motion of the footpoints in two-ribbon flares. Astrophys J, 2007, 665: 1448-1459
[129]
63 Wu G, Huang G, Ji H. Dependence of the anomalous resistivity on the induced electric field in solar flares. Astrophys J, 2010, 720: 771-775
[130]
64 Wu G, Huang G, Ji H. Dependence of anomalous resistivity on bulk drift velocity of electrons in the reconnecting current sheets in solar flares. Res Astron Astrophys, 2010, 10: 1186-1194
[131]
65 Liu Y, Ding M D, Fang C. Enhanced emission at the infrared continuum in the flare of 2001 March 10. Astrophys J, 2001, 563: L169-L172
[132]
16 Wilhelm K, Curdt W, Marsch E, et al. SUMER—Solar ultraviolet measurements of emitted radiation. Sol Phys, 1995, 162: 189-231
[133]
17 Wang T J, Solanki S K, Curdt W, et al. Doppler shift oscillations of hot solar coronal plasma seen by SUMER: A signature of loop oscillations? Astrophys J, 2002, 574: L101-L104
[134]
18 Kaiser M L, Kucera T A, Davila J M, et al. The STEREO mission: An introduction. Space Sci Rev, 2008, 136: 5-16
[135]
19 Liu Y, Luhmann J G, M?st C, et al. Interactions between coronal mass ejections viewed in coordinated imaging and in situ observations. Astrophys J, 2012, 746: L15-L21
[136]
20 Pesnell W D, Thompson B J, Chamberlin P C, et al. The solar dynamics observatory (SDO). Sol Phys, 2012, 275: 3-15
[137]
21 Lemen J R, Title A M, Akin D J, et al. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol Phys, 2012, 275: 17-40
[138]
22 Scherrer P H, Schou J, Bush R I, et al. The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Sol Phys, 2012, 275: 207-227
[139]
23 Schrijver C J, Aulanier G, Title A M, et al. The 2011 February 15 X2 flare, ribbons, coronal front, and mass ejection: Interpreting the three-dimensional views from the solar dynamics observatory and STEREO guided by magnetohydrodynamic elux-rope modeling. Astrophys J, 2011, 738: 167-190
[140]
24 Ilonidis S, Zhao J, Kosovichev A. Helioseismic detection of emerging magnetic flux. Science, 2012, 333: 993-996
[141]
25 Fang C. Recent progress of solar physics research in China. Res Astron Astrophys, 2011, 11: 1377-1402
[142]
26 Fang C, Henoux J C. Self-consistent models of flare heated solar chromospheres. Astron Astrophys, 1983, 118: 139-146
[143]
27 Ai G X, Hu Y F. Propose for a solar magnetic field telescope and its working theorem. Pub Beijing Astronom Observatory, 1986, 8: 1-10
[144]
28 Hu Y Q, Low B C. The energy of electric current sheets. I—Models with moving magnetic dipoles. Sol Phys, 1982, 81: 107-119
[145]
29 Fu Q, Qin Z, Ji H, Pei L. A broadband spectrometer for decimeter and microwave radio bursts. Sol Phys, 1995, 160: 97-103
[146]
30 Chen A Q, Wang J X, Li J W, et al. Statistical properties of superactive regions during solar cycles 19-23. Astron Astrophys, 2011, 534: 47-54
[147]
31 Wang J, Zhang Y, Zhou G, et al. Solar trans-equatorial activity. Sol Phys, 2007, 244: 75-94
[148]
32 Liu R, Wang T J, Lee J, et al. Observing the reconnection region in a transequatorial loop system. Res Astron Astrophys, 2011, 11: 1209-1228
[149]
33 Yang S, Buchner J, Zhang H. Magnetic helicity exchange between neighboring active regions. Astrophys J, 2009, 695: L25-L30
[150]
34 Chen J, Bao S, Zhang H. Helicity patterns of the active regions connected by transequatorial loops. Sol Phys, 2007, 242: 65-85
[151]
35 Wang H N, Yan Y H, Sakurai T. Topology of magnetic field and coronal heating in solar active regions. Sol Phys, 2001, 201: 323-336
[152]
36 Zhang Y, Liu J, Zhang H. Relationship between rotating sunspots and flares. Sol Phys, 2008, 247: 39-52
[153]
37 Zhang J, Li L, Song Q, et al. Interaction between a fast rotating sunspot and ephemeral regions as the origin of the major solar event on 2006 December 13. Astrophys J, 2007, 662: L35-L38
[154]
38 Jiang Y, Zheng R, Yang J, et al. Rapid sunspot rotation associated with the X2.2 flare on 2011 February 15. Astrophys J, 2012, 744: 50-55
[155]
39 Yan X, Qu Z, Kong D, et al. Sunspot rotation, sigmoidal filament, flare, and coronal mass ejection: The event on 2000 February 10. Astrophys J, 2012, 754: 16-24
[156]
41 Li H, Schmieder B, Song M T, et al. Interaction of magnetic field systems leading to an X1.7 flare due to large-scale flux tube emergence. Astron Astrophys, 2007, 475: 1081-1091
[157]
42 Zhang Y, Tan B, Yan Y. A statistical study of the relationship between the transport rate of magnetic helicity and solar flares. Astrophys J, 2009, 704: 1622-1627
[158]
43 Zhang Y, Tan B, Yan Y. Correlation between the sharp variation of the transport rate of magnetic helicity and solar eruptive events. Astrophys J, 2008, 682: L133-L136
[159]
44 Chen A Q, Wang J X. Quantifying solar superactive regions with vector magnetic field observations. Astron Astrophys, 2012, 543: 49-56
[160]
45 Wang J, Zhao M, Zhou G. Magnetic changes in the course of the X7.1 solar flare on 2005 January 20. Astrophys J, 2009, 690: 862-874
[161]
46 Su J, Jing J, Wang H, et al. Observational evidence of changing photospheric vector magnetic fields associated with solar flares. Astrophys J, 2011, 733: 94-100
[162]
47 Wang P, Ding M D, Ji H, et al. Magnetic field changes associated with three successive M-class solar flares on 2002 July 26. Astron Astrophys, 2011, 11: 692-700
[163]
48 Huang G, Ji H, Wu G. The radio signature of magnetic reconnection for the m-class flare of 2004 November 1. Astrophys J, 2008, 672: L131-L134
[164]
49 Li L P, Zhang J. On the brightening propagation of post-flare loops observed by TRACE. Astrophys J, 2009, 690: 347-357
[165]
50 Li L P, Zhang J. Observations of the magnetic reconnection signature of an M2 flare on 2000 March 23. Astrophys J, 2009, 703: 877-882
[166]
51 Li L P, Zhang J. Statistics of flares sweeping across sunspots. Astrophys J, 2009, 706: L17-L21
[167]
194 Cheng X, Ding M D, Guo Y, et al. Re-flaring of a post-flare loop system driven by flux rope emergence and twisting. Astrophys J, 2010, 716: L68-L73
[168]
195 Cheng X, Zhang J, Liu Y, et al. Observing flux rope formation during the impulsive phase of a solar eruption. Astrophys J, 2011, 732: L25-L30
[169]
196 Bi Y, Jiang Y C, Yang L H, et al. Nonradial eruption of a kinking filament observed from STEREO. New Astron, 2011, 16: 276-283
[170]
197 Jiang Y C, Yang J Y, Zheng R S, et al. A narrow streamer-puff coronal mass ejection from the nonradial eruption of an active-region filament. Astrophys J, 2009, 693: 1851-1858
[171]
198 Ji H, Wang H, Schmahl E, et al. Observations of the failed eruption of a filament. Astrophys J, 2003, 595: L135-L138
[172]
199 Guo Y, Ding M D, Schmieder B, et al. Driving mechanism and onset condition of a confined eruption. Astrophys J, 2010, 725: L38-L42
[173]
200 Shen Y, Liu Y, Liu R. A time series of filament eruptions observed by three eyes from space: From failed to successful eruption. Res Astron Astrophys, 2011, 11: 594-606
[174]
201 Liu Y, Su J, Xu Z, et al. New observation of failed filament eruptions: The influence of asymmetric coronal background fields on solar eruptions. Astrophys J, 2009, 696: L70-L73
[175]
202 Jiang Y C, Yang J Y, Hong J C, et al. Sympathetic filament eruptions connected by coronal dimmings. Astrophys J, 2011, 738: 179-186
[176]
203 Li T, Zhang J, Zhao H, et al. Three-dimensional shape and evolution of two eruptive filaments. Astrophys J, 2010, 720: 144-149
[177]
204 Li T, Zhang J, Zhang Y Z, et al. Three-dimensional reconstruction of an erupting filament with solar dynamics observatory and STEREO observations. Astrophys J, 2011, 739: 43-52
[178]
205 Liu Y, Kurokawa H, Liu C, et al. The X10 flare on 29 October 2003: Was it triggered by magnetic reconnection between counter-helical fluxes? Sol Phys, 2007, 240: 253-262
[179]
206 Su J, Liu Y, Kurokawa H, et al. Observation of interactions and eruptions of two filaments. Sol Phys, 2007, 242: 53-63
[180]
207 Li Y, Ding M D. Interaction and eruption of two filaments observed by Hinode, SOHO, and STEREO. Res Astron Astrophys, 2012, 12: 187-200
[181]
208 Guo Y, Ding M D, Schmieder B, et al. Evolution of hard X-ray sources and ultraviolet solar flare ribbons for a confined eruption of a magnetic flux rope. Astrophys J, 2012, 746: 17-27
[182]
209 Kosugi T, Matsuzaki K, Sakao T. The hinode (Solar-B) mission: An overview. Sol Phys, 2007, 243: 3-17
[183]
210 Ning Z, Cao W, Okamoto T J, et al. Small-scale oscillations in a quiescent prominence observed by HINODE/SOT, Prominence oscillations. Astron Astrophys, 2009, 499: 595-600
[184]
211 Ning Z, Cao W, Goode P R. Behavior of the spines in a quiescent prominence observed by hinode/SOT. Astrophys J, 2009, 707: 1124-1130
[185]
212 Chen P F, Innes D E, Solanki S K. SOHO/SUMER observations of prominence oscillation before eruption. Astron Astrophys, 2008, 484: 487-493
[186]
213 Zhang Q M, Chen P F, Xia C, et al. Observations and simulations of longitudina oscillations of an active region prominence. Astron Astrophys, 2012, 542: A52-A57
[187]
214 Xia C, Chen P F, Keppens R, et al. Formation of solar filaments by steady and nonsteady chromospheric heating. Astrophys J, 2011, 737: 27-40
[188]
215 Xia C, Chen P F, Keppens, R. Simulations of prominence formation in the magnetized solar corona by chromospheric heating. Astrophys J, 2012, 748: L26-L31
[189]
216 Li K J, Li Q X, Gao P X, et al. Cyclic behavior of solar full-disk activity. J Geophys Res, 2008, 113: A11108
[190]
217 Li K J, Gao P X, Zhan L S, et al. The long-term hemispheric sunspot activity. Astrophys J, 2009, 691: 75-82
[191]
218 Li K J, Chen H D, Zhan L S, et al. Asymmetry of solar activity in cycle 23. J Geophys Res, 2009, 114: A04101
[192]
219 Li K J, Gao P X, Zhan L S. The long-term behavior of the north south asymmetry of sunspot activity. Sol Phys, 2009, 254: 145-154
[193]
220 Goel A, A R Choudhuri. The hemisphereic asymmetry of solar activity during the last century and the solar dynamo. Res Astron Atrophys, 2009, 9: 115-126
[194]
221 Li K J, Liu X H, Gao P X, et al. The north-south asymmetry of filaments in solar cycles 16-21. New Astron, 2009, 15: 346-351
[195]
222 Li K J, Gao P X, Zhan L S, et al. The north-south asymmetry of solar activity at high latitudes. Mon Not Roy Astron Soc, 2009, 394: 231-238
[196]
223 Li K J. Systematic time delay of hemispheric solar activity. Sol Phys, 2009, 255: 169-177
[197]
224 Li K J, Gao P X, Zhan L S. Synchronization of hemispheric sunspot activity revisited: Wavelet transform analyses. Astrophys J, 2009, 691: 537-546
[198]
225 Li K J, Gao P X, Zhan L S, et al. Relative phase analyses of long-term hemispheric solar flare activity. Mon Not Roy Astron Soc, 2010, 401: 342-348
[199]
226 Li K J, Gao P X, Zhan L S, et al. Synchronization of sunspot numbers and sunspot areas. Sol Phys, 2009, 255: 289-300
[200]
227 Li K J, Liang H F, Feng W, et al. Phase shifts of the paired wings of butterfly diagrams,Phase shifts of the paired wings of butterfly diagrams. Res Astron Astrophys, 2010, 10: 1177-1185
[201]
231 Zhang L, Wang H N, Du Z L. Prediction of solar active longitudes. Astron Astrophys, 2008, 484: 523-527
[202]
234 Bao S, Zhang H. Patterns of current helicity for the twenty-second solar cycle. Astrophys J, 1998, 496: L43-L46
[203]
235 Zhang H, Bao S. Latitudinal distribution of photospheric current helicity and solar activities. Astron Astrophys, 1998, 339: 880-886
[204]
236 Zhang H, Sakurai T, Pevtsov A, et al. A new dynamo pattern revealed by solar helical magnetic fields. Mon Not Roy Astron Soc, 2010, 402: 30-41
[205]
237 Zhang H, Moss D, Kleeorin N, et al. Current helicity of active regions as a tracer of large-scale solar magnetic helicity. Astrophys J, 2012, 751: 47-56
[206]
52 Liu J, Zhang Y, Zhang H. Relationship between Powerful flares and dynamic evolution of the magnetic field at the solar surface. Sol Phys, 2008, 248: 67-84
[207]
53 Xie W, Zhang H, Wang H. Study of ribbon separation and magnetic reconnection rates in a two-ribbon flare. Sol Phys, 2009, 254: 271-283
[208]
54 Cheng X, Zhang J, Ding M D, et al. A comparative study of confined and eruptive flares in NOAA AR 10720. Astrophys J, 2011, 732: 87-94
[209]
99 Li H, Sakurai T, Ichimito K, et al. Response of the solar atmosphere to magnetic flux emergence from hinode observations. Publ Astron Soc Jpn, 2007, 59: 643-648
[210]
100 Zhang Q M, Chen P F, Guo Y, et al. Two types of magnetic reconnection in coronal bright points and the corresponding magnetic configuration. Astrophys J, 2012, 746: 19-27
[211]
101 Jiang R, Shibata K, Isobe H, et al. Detailed analysis of fan-shaped jets in three dimensional numerical simulation. Res Astron Astrophys, 2011, 11: 701-724
[212]
102 Zhang J, Liu Y. Ubiquitous rotating network magnetic fields and extreme-ultraviolet cyclones in the quiet Sun. Astrophys J, 2012, 741: L7-L10
[213]
103 Ding M D, Henoux J C, Fang C. Line profiles in moustaches produced by an impacting energetic particle beam. Astron Astrophys, 1998, 332: 761-766
[214]
104 Fang C, Tang Y H, Xu Z. Spectral analysis and atmospheric models of microflare. Chin J Astron Ast, 2006, 6: 597-607
[215]
105 Fang C, Tang Y H, Xu Z, et al. Spectral analysis of ellerman bombs. Astrophys J, 2006, 643: 1325-1336
[216]
106 Fang C, Chen P F, Jiang R L, et al. Synthetic analysis of a two-ribbon microflare. Res Astron Astrophys, 2010, 10: 83-90
[217]
107 Xu X Y, Fang C, Ding M D, et al. Numerical simulations of magnetic reconnection in the lower solar atmosphere. Res Astron Astrophys, 2011, 11: 225-236
[218]
108 Jiang R L, Fang C, Chen P F. Numerical simulations of chromospheric microflares. Astrophys J, 2010, 710: 1387-1394
[219]
109 Yang L H, Jiang Y C, Yang J Y, et al. Observations of EUV and soft X-ray recurring jets in an active region. Res Astron Astrophys, 2011, 11: 1229-1242
[220]
110 Jiang Y C, Chen H D, Li K J, et al. The Hα surges and EUV jets from magnetic flux emergences and cancellations. Astron Astrophys, 2007, 469: 331-337
[221]
111 Chen F, Ding M D. Evidence of explosive evaporation in a microflare observed by Hinode/EIS. Astrophys J, 2010, 724: 640-648
[222]
118 Ji H, Cao W, Goode P. Observation of ultrafine channels of solar corona heating. Astrophys J, 2012, 750: L25-L29
[223]
119 Deng Y, Wang J, Ai G. The detection of “magnetic element” why we need a one-meter space solar telescope. Adv Space Res, 2009, 43: 365-368
[224]
120 Liu Z, Jin Z. Simulation of chinese giant solar telescope. SPIE, 2011, 8336: 8-9
[225]
121 Liu Y, Shen Y, Zhang X, et al. Using a new sky brightness monitor to observe the annular solar eclipse on 15 January 2010. Sol Phys, 2012, 279: 561-572
[226]
122 Zhou G P, Wang J X, Cao Z L. Correlation between halo coronal mass ejections and solar surface activity. Astron Astrophys, 2003, 397: 1057-1067
[227]
123 Wang J X, Zhou G P, Wen Y Y, et al. A trans-equatorial filament and the bastille day flare/CME event. Proc Int Astron Union, 2005, 226: 135-136
[228]
124 Wang J X, Zhou G P, Wen Y Y, et al. Transequatorial filament eruption and its link to a coronal mass ejection. Chin J Astron Ast, 2006, 6: 247-259
[229]
125 Wang J X, Zhang Y Z, Zhou G P, et al. Solar trans-equatorial activity. Sol Phys, 2007, 244: 75-94
[230]
129 Wen Y Y, Wang J X, Zhang Y Z. Magnetic properties of metric noise storms associated with coronal mass ejections. Chin J Astron Ast, 2007, 7: 265-280
[231]
131 Jiang J, Choudhuri A R, Wang J X. A New explanation for the origin of trans-equatorial loops based on a dynamo model. Sol Phys, 2007, 245: 19-25
[232]
132 Zhou G P, Wang J X, Zhang J, et al. The large-scale source regions of CMEs. Proc Int Astron Union, 2005, 226: 200-205
[233]
133 Zhou G P, Wang J X, Zhang J. Large-scale source regions of earth-directed coronal mass ejections. Astron Astrophys, 2006, 445: 1133-1141
[234]
134 Zhang J, Wang J, Deng Y, et al. Magnetic flux cancellation associated with the major solar event on 2000 July 14. Astrophys J, 2001, 548: L99-L102
[235]
135 Cheng X, Ding M D, Zhang J. A study of the build-up, initiation, and acceleration of 2008 April 26 coronal mass ejection observed by STEREO. Astrophys J, 2010, 712: 1302-1310
[236]
136 Zhao H, Wang J X, Zhang J, et al. Determination of the topology skeleton of magnetic fields in a solar active region. Chin J Astron Ast, 2008, 8: 133-145
[237]
137 Guo J, Zhang H Q, Chumak O V. Magnetic properties of flare-CME productive active regions and CME speed. Astron Astrophys, 2007, 462: 1121-1126
[238]
138 Zhang Y, Zhang M, Zhang H. On the relationship between flux emergence and CME initiation. Sol Phys, 2008, 250: 75-88
[239]
139 Zhang M, Low C. The hydromagnetic nature of solar coronal mass ejections. Annu Rev Astron Astr, 2005, 43: 103-137
[240]
140 Zhang M, Flyer N. The dependence of the helicity bound of force-free magnetic fields on boundary conditions. Astrophys J, 2008, 683: 1160-1167
[241]
141 Wang Y, Zhang J. A statistical study of solar active regions that produce extremely fast coronal mass ejections. Astrophys J, 2008, 680: 1516-1522
[242]
142 Wang Y, Zhang J. A comparative study between eruptive X-class flares associated with coronal mass ejections and confined X-Class flares. Astrophys J, 2007, 665: 1428-1438
[243]
143 Lin J, Forbes T G. Effects of reconnection on the coronal mass ejection process. J Geophys Res, 2000, 105: 2375-2392
[244]
144 Lin J, Li J, Forbes T G, et al. Features and properties of coronal mass ejection/flare current sheets. Astrophys J, 2007, 658: L123-L126
[245]
238 Yang S, Zhang H. Large-scale magnetic helicity fluxes estimated from mdi magnetic synoptic charts over the solar cycle 23. Astrophys J, 2012, 758: 61-66
[246]
239 Zhang H. Reversal magnetic chirality of solar active regions and a possible dynamo model. Mon Not Roy Astron Soc, 2012, 419: 799-805
[247]
240 Hao J, Zhang M. Hemispheric helicity trend for solar cycle 24. Astrophys J, 2011, 733: L27-L32
[248]
241 Du Z L, Wang H N. The prediction method of similar cycles. Res Astron Astrophys, 2011, 11: 1482-1492
[249]
242 Yuan Y, Shih F Y, Jing J, Wang H M. Automated flare forecasting using a statistical learning technique. Res Astron Astrophys, 2010, 10: 785-796
[250]
243 Du Z L, Li R, Wang H N. The predictive power of ohl’s precursor method. Astron J, 2009, 138: 1998-2001
[251]
244 Du Z. The correlation between solar and geomagnetic activity—Part 3: An integral response model. Ann Geophys, 2011, 29: 1005-1015
[252]
245 Du Z, Wang H, Zhang L. Correlation function analysis between sunspot cycle amplitudes and rise times. Sol Phys, 2009, 255: 179-185
[253]
246 Du Z, Wang H. Does a low solar cycle minimum hint at a weak upcoming cycle? Res Astron Astrophys, 2010, 10: 950-955
[254]
247 Du Z, Wang H, Zhang L. A running average method for predicting the size and length of a solar cycle. Chin J Astron Ast, 2008, 8: 477-488
[255]
248 Fang C, Li K J. Frontier and Future of Science (2009-2011): Xiangshan-science Conferences. Beijing: Science Press, 2011. 201-203
[256]
249 Li K J. What does the Sun tell and hint now? Res Astron Astrophys, 2009, 9: 959-965
[257]
250 Li K J, Feng W, Liang H F, et al. A brief review of the presentation of cycle 24, the first integrated solar cycle in the new millenniumm. Ann Geophys. 2011, 29: 341-347
[258]
251 Choudhuri A R, Chatterjee P, Jiang J. Predicting solar cycle 24 with a solar dynamo model. Phys Rev Lett, 2007, 98: 1103-1109
[259]
252 Jiang J, Chatterjee P, Choudhuri A R. Solar activity forecast with a dynamo model. Mon Not Roy Astron Soc, 2007, 381: 1527-1542
[260]
253 Li R, Wang H N, He H, et al. Support vector machine combined with k-nearest neighbors for solar flare forecasting. Chin J Astron Ast, 2007, 7: 441-447
[261]
254 Huang X, Yu D R, Hu Q H, et al. Short-term solar flare prediction using predictor teams. Sol Phys, 2010, 263: 175-184
[262]
255 Wang H N, Cui Y M, Li R, et al. Solar flare forecasting model supported with artificial neural network techniques. Adv Space Res, 2008, 42: 1464-1468
[263]
263 Wang H N, Cui Y M, He H. A logistic model for magnetic energy storage in solar active regions. Res Astron Astrophys, 2009, 9: 687-693