13 Yin H F, Zhang K X, Tong J N, et al. The global stratotype section and point (GSSP) of the Permian-Triassic boundary. Episodes, 2001, 24: 102-114
[14]
14 Feng Q L, He W H, Gu S Z, et al. Radiolarian evolution during the latest Permian in South China. Globa Planet Change, 2007, 55: 177-192
[15]
38 Lazarus D, Bittniok B, Diester-Haass L, et al. Radiolarian and sedimentologic paleoproductivity proxies in late Pleistocene sediments of the Benguela Upwelling System, ODP Site 1084. Mar Micropaleontol, 2008, 68: 223-235
[16]
39 Paul T, David M, Nelson A, Van B, et al. The Silica Balance in the world ocean: A reestimate. Science, 1995, 286: 375-379
[17]
40 DeMaster D J. The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta, 1981, 45: 1715-1732
[18]
41 Heinze C, Hupe A, Maier-Reimer E, et al. Sensitivity of the marine biospheric Si cycle for biogeochemical parameter variations. Glob Biogeochem Cycles, 2003, 17: 12-18
16 Noble P J, Naraoka H, Poulson S R, et al. Paleohydrographic influences on Permian radiolarians in the Lamar limestone, Guadalupe Mountains, West Texas, elucidated by organic biomarker and stable isotope geochemistry. Palaios, 2011, 26: 180-186
[21]
17 Kozur H W. Upper Permian radiolarians from the Sosio Valley Area, Western Sicily (Italy) and from the uppermost Lamar Limestone of West Texas. Jahrbuch der Geologischen Bundesanstalt Wien, 1993, 136: 99-123
[22]
18 Fang N Q, Feng Q L. Devonian to Triassic Tethys in Western Yunnan. Wuhan: China University of Geosciences Press, 1996. 1-135
20 Renz G W. The distribution and ecology of radiolaria in the central Pacific: Plankton and surface sediments. Bull Scripps Ins Oceanogr, 1976, 22: 267-280
23 Yamamoto K. Geochemical characteristics and depositional environment of cherts and associated rocks in the Franciscan and Shiman to terranes. Sediment Geol, 1987, 52: 65-78
[28]
24 韩发, Hutchinson R W. 大厂锡多金属矿床热液喷气沉积的证据—含矿建造及热液沉积岩. 矿床地质, 1989, 8: 672-677
[29]
25 Adachi M, Yamamoto K, Sugisaki R. Hydrotherrnal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity. Sediment Geol, 1986, 47: 125-148
27 Banahan S, Goering J J. The production of biogenic silica and accumulation on the southeastern Bering Sea shelf. Cont Shelf Res, 1986, 5: 199-213
[32]
28 Lyle M, Murray D W, Finney B P, et al. The record of late Pleistocene sedimentation in the eastern tropical Pacific Ocean. Paleoceanography, 1988, 3: 39-59
[33]
29 Dapples E C. Diagenesis of sandstones. In: Larsen G, Chillingar C V, eds. Diagcnesis in Sediments. Amsterdam: Elsevier, 1967. 91-125
[34]
30 Rona P A. Hvdmthermal mineralization of oceanic ridges, Canadian. Minemlogy, 1988, 26: 447-465
32 Tayor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution Blackwell. Oxford: Oxford University Press, 1985. 10-125
[37]
33 Caron D A, Michaels A F, Swanberg N R, et al. Primary productivity by symbiont-bearing planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda. J Plankton Res, 1995, 17: 103-129
[38]
34 Dennett M R, Caron D A, Michaels A F, et al. Video plankton recorder reveals high abundances of colonial Radiolaria in surface waters of the central North Pacific. J Plankton Res, 2002, 24: 797-805
[39]
35 Anderson O R, Bennett P, Angel D, et al. Experimental and observational studies of radiolarian physiological ecology: 2. Trophic activity and symbiont primary productivity of Spongaster tetras with comparative data on predatory activity of some Nassellarida. Mar Micropaleontol, 1989, 14: 267-273
[40]
36 Chen M H, Huang L M, Tu X, et al. Radiolarian transfer function for paleo-primary productivity in the South China Sea. Chin Sci Bull, 1999, 44: 1232-1237
[41]
37 Lazarus D, Bittniok B, Diester-Haass L, et al. Comparison of radiolarian and sedimentologic paleoproductivity proxies in the latest Miocene-Recent Benguela Upwelling System. Mar Micropaleontol, 2006, 60: 269-294