全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

贵州安顺长兴阶放射虫动物群及其与TOC和古生产力的关系

, PP. 1047-1056

Keywords: 贵州,长兴阶,放射虫,TOC,生物硅,古生产力

Full-Text   Cite this paper   Add to My Lib

Abstract:

?贵州新民剖面大隆组的微化石丰富,保存较好.其中,放射虫鉴定出7属9种,全部为球形放射虫,未发现阿尔拜虫类和十字多囊虫类分子,反映该剖面为相对浅水环境条件下沉积形成;海绵骨针鉴定出9种类型.通过对放射虫壳体和海绵骨针个体的定量统计,以及TOC和地球化学元素的分析发现:该放射虫组合与TOC之间存在很好的对应关系,表明Copicyntra和Paracopicyntra两属为代表的球形放射虫组合可以作为指示硅-泥质岩层序古生产力的一种替代指标.但放射虫、海绵骨针丰度与生物硅之间相关性较差,可能是生物硅溶解和沉积过程中受到海水循环的影响.

References

[1]  1 康玉柱. 中国古生代大型油气田成藏条件及勘探方向. 天然气工业, 2007, 27: 1-5
[2]  2 康玉柱. 自主创新与古生代油气田的发现. 中国工程科学, 2006, 8: 19-23
[3]  3 谢树成, 殷鸿福, 解习农, 等. 地球生物学方法与海相优质烃源岩形成过程的正演和评价. 地球科学—中国地质大学学报, 2007, 32: 727-740
[4]  4 坛俊颖, 王文龙, 王延斌, 等. 中上扬子下寒武统牛蹄塘组海相烃源岩评价. 海洋地质前沿, 2011, 27: 23-27
[5]  5 杨光龙, 崔登伟. 黔北牛蹄塘组黑色岩系中的矿产特征及找矿远景分析. 贵州地质, 2010, 27: 208-212
[6]  6 张伦尉, 杭家华, 梁琼, 等. 贵州陡山沱组和牛蹄塘组中黑层的地质特征与找矿前景. 矿物学报, 2007, 27: 456-460
[7]  7 刘峰, 蔡进功, 吕炳全, 等. 下扬子五峰组上升流相烃源岩沉积特征. 同济大学学报(自然科学版), 2011, 39: 440-444
[8]  8 张海全, 许效松, 余谦, 等. 扬子板块西北缘晚奥陶-早志留世岩相古地理演化与烃源岩的关系. 石油天然气学报, 2010, 32: 43-47
[9]  9 付小东, 秦建中, 腾格尔, 等. 四川盆地北缘上二叠统大隆组烃源岩评价. 石油实验地质, 2010, 32: 566-571
[10]  10 夏茂龙, 文龙, 王一刚, 等. 四川盆地上二叠统海槽相大隆组优质烃源岩. 石油勘探与开发, 2010, 37: 654-662
[11]  11 李敬红, 解习农, 林正良, 等. 四川盆地广元地区大隆组有机质富集规律. 地质科技情报, 2009, 28: 98-103
[12]  12 孙省利, 陈践发, 刘文汇, 等. 塔里木盆地下寒武统硅质岩地球化学特征及其形成环境. 石油勘探与开发, 2004, 31: 45-48
[13]  13 Yin H F, Zhang K X, Tong J N, et al. The global stratotype section and point (GSSP) of the Permian-Triassic boundary. Episodes, 2001, 24: 102-114
[14]  14 Feng Q L, He W H, Gu S Z, et al. Radiolarian evolution during the latest Permian in South China. Globa Planet Change, 2007, 55: 177-192
[15]  38 Lazarus D, Bittniok B, Diester-Haass L, et al. Radiolarian and sedimentologic paleoproductivity proxies in late Pleistocene sediments of the Benguela Upwelling System, ODP Site 1084. Mar Micropaleontol, 2008, 68: 223-235
[16]  39 Paul T, David M, Nelson A, Van B, et al. The Silica Balance in the world ocean: A reestimate. Science, 1995, 286: 375-379
[17]  40 DeMaster D J. The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta, 1981, 45: 1715-1732
[18]  41 Heinze C, Hupe A, Maier-Reimer E, et al. Sensitivity of the marine biospheric Si cycle for biogeochemical parameter variations. Glob Biogeochem Cycles, 2003, 17: 12-18
[19]  15 吴俊, 冯庆来. 广西晚长兴期放射虫生物地层学及其与牙形石带的对比. 中国科学: 地球科学, 2008, 38: 1543-1552
[20]  16 Noble P J, Naraoka H, Poulson S R, et al. Paleohydrographic influences on Permian radiolarians in the Lamar limestone, Guadalupe Mountains, West Texas, elucidated by organic biomarker and stable isotope geochemistry. Palaios, 2011, 26: 180-186
[21]  17 Kozur H W. Upper Permian radiolarians from the Sosio Valley Area, Western Sicily (Italy) and from the uppermost Lamar Limestone of West Texas. Jahrbuch der Geologischen Bundesanstalt Wien, 1993, 136: 99-123
[22]  18 Fang N Q, Feng Q L. Devonian to Triassic Tethys in Western Yunnan. Wuhan: China University of Geosciences Press, 1996. 1-135
[23]  19 何卫红. 煤山D剖面的放射虫动物群与海平面变化. 地球科学—中国地质大学学报, 2006, 31: 159-164
[24]  20 Renz G W. The distribution and ecology of radiolaria in the central Pacific: Plankton and surface sediments. Bull Scripps Ins Oceanogr, 1976, 22: 267-280
[25]  21 谭智源, 陈木宏. 中国近海的放射虫. 北京: 科学出版社, 1999. 12-404
[26]  22 王汝建, 陈荣华. 白令海表层沉积物中硅质生物的变化及其环境控制因素. 地球科学—中国地质大学学报, 2004, 29: 685-690
[27]  23 Yamamoto K. Geochemical characteristics and depositional environment of cherts and associated rocks in the Franciscan and Shiman to terranes. Sediment Geol, 1987, 52: 65-78
[28]  24 韩发, Hutchinson R W. 大厂锡多金属矿床热液喷气沉积的证据—含矿建造及热液沉积岩. 矿床地质, 1989, 8: 672-677
[29]  25 Adachi M, Yamamoto K, Sugisaki R. Hydrotherrnal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity. Sediment Geol, 1986, 47: 125-148
[30]  26 田云涛, 冯庆来, 李琴. 桂西南柳桥地区上二叠统大隆组层状硅质岩成因和沉积环境. 沉积学报, 2007, 25: 671-677
[31]  27 Banahan S, Goering J J. The production of biogenic silica and accumulation on the southeastern Bering Sea shelf. Cont Shelf Res, 1986, 5: 199-213
[32]  28 Lyle M, Murray D W, Finney B P, et al. The record of late Pleistocene sedimentation in the eastern tropical Pacific Ocean. Paleoceanography, 1988, 3: 39-59
[33]  29 Dapples E C. Diagenesis of sandstones. In: Larsen G, Chillingar C V, eds. Diagcnesis in Sediments. Amsterdam: Elsevier, 1967. 91-125
[34]  30 Rona P A. Hvdmthermal mineralization of oceanic ridges, Canadian. Minemlogy, 1988, 26: 447-465
[35]  31 毛晓冬, 刘云华. 广东省长坑金银矿床硅质岩石成因分析. 岩石矿物学杂志, 2004, 23: 158-166
[36]  32 Tayor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution Blackwell. Oxford: Oxford University Press, 1985. 10-125
[37]  33 Caron D A, Michaels A F, Swanberg N R, et al. Primary productivity by symbiont-bearing planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda. J Plankton Res, 1995, 17: 103-129
[38]  34 Dennett M R, Caron D A, Michaels A F, et al. Video plankton recorder reveals high abundances of colonial Radiolaria in surface waters of the central North Pacific. J Plankton Res, 2002, 24: 797-805
[39]  35 Anderson O R, Bennett P, Angel D, et al. Experimental and observational studies of radiolarian physiological ecology: 2. Trophic activity and symbiont primary productivity of Spongaster tetras with comparative data on predatory activity of some Nassellarida. Mar Micropaleontol, 1989, 14: 267-273
[40]  36 Chen M H, Huang L M, Tu X, et al. Radiolarian transfer function for paleo-primary productivity in the South China Sea. Chin Sci Bull, 1999, 44: 1232-1237
[41]  37 Lazarus D, Bittniok B, Diester-Haass L, et al. Comparison of radiolarian and sedimentologic paleoproductivity proxies in the latest Miocene-Recent Benguela Upwelling System. Mar Micropaleontol, 2006, 60: 269-294

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133