全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

芦山与汶川地震震区地壳上地幔结构及深部孕震环境

, PP. 1027-1037

Keywords: 芦山地震,汶川地震,接收函数,噪声层析成像,深部孕震环境

Full-Text   Cite this paper   Add to My Lib

Abstract:

?雅安芦山Mw6.6级地震,是汶川7.9级地震之后龙门山地区的又一次强震,给当地的社会经济发展和生态环境带来了巨大的破坏.本文借助全国地震台网连续波形数据,使用背景噪声层析成像方法和远震接收函数分析方法,获得了震区及其周边地区精细的S波速度结构和地壳厚度、泊松比分布情况,进而分析了龙门山断裂带及邻区深部孕震环境.研究结果发现:(1)龙门山断裂带两侧剪切波速度和地壳厚度有非常显著的差异;(2)芦山和汶川地震均位于地壳厚度和波速结构变化剧烈之处,断层的破裂面和余震的分布均处于地震波横向速度梯度和地壳厚度的横向梯度跳变的地区;地震深度处于从均匀波速结构向非均匀波速结构过渡区域;(3)汶川地震及其余震发生在泊松比较低的地区,而芦山地震及其余震发生在高泊松比的地区.我们推测,横向的显著速度变化,以及地壳厚度和地形高度的巨大差异所产生的重力势能等作用可能在一定程度上构造成了龙门山断裂系上大地震的孕震环境,而龙门山断裂带南北段岩石泊松比的差别,可能是导致汶川地震余震空间分布和芦山地震延后5年发生的原因.

References

[1]  1 谢祖军, 金笔凯, 郑勇, 等. 近远震波形联合反演2013年芦山地震震源参数. 中国科学: 地球科学, 2013, 43: 1010-1019
[2]  2 刘成利, 郑勇, 葛粲, 等. 2013年芦山7.0级地震的动态破裂过程. 中国科学: 地球科学, 2013, 43: 1020-1026
[3]  40 Zheng Y, Yang Y, Ritzwoller M H, et al. Crustal structure of the northeastern Tibetan Plateau, the Ordos block and the Sichuan basin from ambient noise tomography. Earthquake Sci, 2010, 23: 465-476
[4]  41 Zhou L, Xie J, Shen W, et al. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography. Geophys J Int, 2012, 189: 1565-1583
[5]  42 Luo Y, Xu Y, Yang Y. Crustal structure beneath the Dabie orogenic belt from ambient noise tomography. Earth Planet Sci Lett, 2012, 313: 12-22
[6]  43 Yao H, Campman X, de Hoop M V, et al. Estimation of surface wave Green’s functions from correlation of direct waves, coda waves, and ambient noise in SE Tibet. Phys Earth Planet Int, 2009, 177: 1-11
[7]  44 Yao H, Van Der Hilst R D. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet. Geophys J Int, 2009, 179: 1113-1132
[8]  45 Yao H, Beghein C, Van Der Hilst R D. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and upper-mantle structure. Geophys J Int, 2008, 173: 205-219
[9]  46 Ligorría J P, Ammon C J. Iterative deconvolution and receiver-function estimation. Bull Seismol Soc Amer, 1999, 89: 1395-1400
[10]  47 Niu F, Li J. Component azimuths of the CEArray stations estimated from P-wave particle motion. Earthquake Sci, 2011, 24: 3-13
[11]  62 周永胜, 何昌荣. 汶川地震区的流变结构与发震高角度逆断层滑动的力学条件. 地球物理学报, 2009, 52: 474-484
[12]  63 单斌, 熊熊, 郑勇, 等. 2013年芦山地震导致的周边断层应力变化及其与2008年汶川地震的关系. 中国科学: 地球科学, 2013, 43: 1002-1009
[13]  3 张培震, 徐锡伟, 闻学泽. 2008 年汶川 8.0 级地震发震断裂的滑动速率、复发周期和构造成因. 地球物理学报, 2008, 51: 1066-1073
[14]  4 Yin A, Harrison T M. Geological evolution of the Himalayan-Tibetan Orogen. Ann Rev Earth Planet Sci, 2000, 28: 211-80
[15]  5 Yi Z, Huang B, Chen J, et al. Paleomagnetism of early Paleogene marine sediments in southern Tibet, China: Implications to onset of the India-Asia collision and size of Greater India. Earth Planet Sci Lett, 2011, 309: 153-165
[16]  6 吴庆举, 曾融生, 赵文津. 喜马拉雅-青藏高原的上地幔倾斜构造与陆-陆碰撞过程. 中国科学D辑: 地球科学, 2004, 34: 919-925
[17]  7 吴庆举, 曾融生. 用宽频带远震接收函数研究青藏高原的地壳结构. 地球物理学报, 1998, 41: 669-679
[18]  8 Clark M K, Royden L H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 2000, 28: 703-706
[19]  9 Royden L H, Burchfiel B C, van der Hilst R D. The geological evolution of the Tibetan Plateau. Science, 2008, 321: 1054-1058
[20]  10 Zhang Z, Yuan X, Chen Y, et al. Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin. Earth Planet Sci Lett, 2010, 292: 254-264
[21]  11 Zhang Z, Wang Y, Chen Y, et al. Crustal structure across Longmenshan fault belt from passive source seismic profiling. Geophys Res Lett, 2009, 36: L17310, doi: 10.1029/2009GL039580
[22]  12 England P, Molnar P. Active deformation of Asia: From kinematics to dynamics. Science, 1997, 278: 647-650
[23]  13 Rey P, Vanderhaeghe O, Teyssier C. Gravitational collapse of the continental crust: Definition, regimes and modes. Tectonophysics, 2001, 342: 435-449
[24]  14 Bendick R, Flesch L. Reconciling lithospheric deformation and lower crustal flow beneath central Tibet. Geology, 2007, 35: 895-898
[25]  15 Barmin M P, Ritzwoller M H, Levshin A L. A fast and reliable method for surface wave tomography. Pure Appl Geophy, 2001, 158: 1351-1375
[26]  16 Ghosh A, Holt W E, Flesch L M. Contribution of gravitational potential energy differences to the global stress field. Geophys J Int, 2009, 179: 787-812
[27]  17 Pascal C, Cloetingh S A P L. Gravitational potential stresses and stress field of passive continental margins: Insights from the south-Norway shelf. Earth Planet Sci Lett, 2009, 277: 464-473
[28]  18 Jones C H, Unruh J R, Sonder L J. The role of gravitational potential energy in active deformation in the southwestern United States. Nature, 1996, 381: 37-41
[29]  19 Ghosh A, Holt W E, Flesch L M, et al. Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate. Geology, 2006, 34: 321-324
[30]  20 Hodges K V, Hurtado J M, Whipple K X. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectonics, 2001, 20: 799-809
[31]  21 Naliboff J B, Lithgow-Bertelloni C, Ruff L J, et al. The effects of lithospheric thickness and density structure on Earth’s stress field. Geophys J Int, 2012, 188: 1-17
[32]  22 郑秀芬, 欧阳飚, 张东宁, 等. “国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑. 地球物理学报, 2009, 52: 1412-1417
[33]  23 Zheng X F, Yao Z X, Liang J H, et al. The role played and opportunities provided by IGP DMC of China National Seismic Network in Wenchuan earthquake disaster relief and researches. Bull Amer Meteorol Soc, 2010, 100: 2866-2872
[34]  24 Li Z W, Ni S D, Hao T Y, et al. Uppermost mantle structure of the eastern margin of the Tibetan Plateau from interstation Pn traveltime difference tomography. Earth Planet Sci Lett, 2012, 335-336: 195-205
[35]  25 李志伟, 胥颐, 黄润秋, 等. 龙门山地区的P波速度结构与汶川地震的深部构造特征. 中国科学: 地球科学, 2011, 41: 283-290
[36]  26 Xu Y, Li Z W, Huang R, et al. Seismic structure of the Longmen Shan region from S-wave tomography and its relationship with the Wenchuan Ms8.0 earthquake on 12 May 2008, sourthwestern China. Geophys Res Lett, 2010, 37: L02304
[37]  27 Li C, van der Hilst R D, Toks?z M N. Constraining P-wave velocity variations in the upper mantle beneath Southeast Asia. Physics Earth Planet Int, 2006, 154: 180-195
[38]  28 Li C, van der Hilst R D, Engdahl E R, et al. A new global model for P wave speed variations in Earth’s mantle. Geochem Geophys Geosyst, 2008, 9: Q05018, doi: 10.1029/2007GC001806
[39]  29 Bai Z, Tian X, Tian Y. Upper mantle P-wave tomography across the Longmenshan fault belt from passive-source seismic observations along Aba-Longquanshan profile. J Asian Earth Sci, 2011, 40: 873-882
[40]  30 Liang C, Song X, Huang J. Tomographic inversion of Pn travel times in China. J Geophys Res, 2004, 109: B11304
[41]  31 Zhang P Z, Wen X, Shen Z K, et al. Oblique, high-angle, listric-reverse faulting and associated development of strain: The Wenchuan earthquake of May 12, 2008, Sichuan, China. Annu Rev Earth Planet Sci, 2010, 38: 353-382
[42]  32 Langston C A. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J Geophys Res-Solid Earth, 1979, 84: 4749-4762
[43]  33 Zhu L, Kanamori H. Moho depth variation in southern California from teleseismic receiver functions. J Geophys Res, 2000, 105: 2969- 2980
[44]  34 葛粲, 郑勇, 熊熊. 华北地区地壳厚度与泊松比研究. 地球物理学报, 2011, 54: 2538
[45]  35 Sabra K G, Gerstoft P, Roux P, et al. Surface wave tomography from microseisms in Southern California. Geophys Res Lett, 2005, 32: L14311
[46]  36 Shapiro N M, Campillo M, Stehly L, et al. High-resolution surface-wave tomography from ambient seismic noise. Science, 2005, 307: 1615-1618
[47]  37 Yang Y, Ritzwoller M H, Zheng Y, et al. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet. J Geophys Res, 2012, 117, doi: 10.1029/2011JB008810
[48]  38 Yang Y, Zheng Y, Chen J, et al. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography. Geochem Geophys Geosystem, 2010, 11: Q08010
[49]  39 Zheng Y, Shen W, Zhou L, et al. Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography. J Geophys Res, 2011, 116: B12312, doi: 10.1029/2011JB008637
[50]  48 Sun Y, Toks?z M N. Crustal structure of China and surrounding regions from P wave traveltime tomography. J Geophys Res, 2006, 111: B03310, doi: 10.1029/2005JB003962
[51]  49 Sun Y, Li X, Kuleli S, et al. Adaptive moving window method for 3D P-velocity tomography and its application in China. Bull Seismol Soc Amer, 2004, 94: 740-746
[52]  50 Bensen G D, Ritzwoller M H, Barmin M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int, 2007, 169: 1239-1260
[53]  51 Lin F C, Moschetti M P, Ritzwoller M H. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys J Int, 2008, 173: 281-298
[54]  52 张培震, 邓启东, 张国民, 等. 中国大陆的强震活动与活动地块. 中国科学D辑: 地球科学, 2003, 33(增刊): 12-20
[55]  53 Shen W, Ritzwoller M H, Schulte-Pelkum V, et al. Joint inversion of surface wave dispersion and receiver functions: A Bayesian Monte-Carlo approach. Geophys J Int, 2013, 192: 807-836
[56]  54 Shen W, Ritzwoller M H, Schulte-Pelkum V. A 3-D model of the crust and uppermost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion. J Geophys Res, 2013, 118, doi: 10.1029/2012JB009602
[57]  55 Christensen N I, Mooney W D. Seismic velocity structure and composition of the continental crust: A global view. J Geophys Res, 1995, 100: 9761-9788
[58]  56 Wang C Y, Han W B, Wu J P, et al. Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications. J Geophys Res, 2007, 112: B07307, doi: 10.1029/2005JB003873
[59]  57 王椿镛, 楼海, 吕智勇, 等. 青藏高原东部地壳上地幔S波速度结构——下地壳流的深部环境. 中国科学D辑: 地球科学, 2008, 38: 22-32
[60]  58 Wang Z, Fukao Y, Pei S. Structural control of rupturing of the Mw7.9 2008 Wenchuan Earthquake, China. Earth Planet Sci Lett, 2009, 279: 131-138
[61]  59 Lei J, Zhao D. Structural heterogeneity of the Longmenshan fault zone and the mechanism of the 2008 Wenchuan earthquake (Ms8.0). Geochem Geophys Geosyst, 2009, 10, doi: 10.1029/2009GC002590
[62]  60 单斌, 熊熊, 郑勇, 等. 2008年5月12日Mw7.9汶川地震导致的周边断层应力变化. 中国科学D辑: 地球科学, 2009: 537-545
[63]  61 Christensen N I. Poisson’s ratio and crustal seismology. J Geophys Res, 1996, 101: 3139-3156

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133