全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

日冕物质抛射的行星际动力学过程研究

, PP. 934-950

Keywords: 日冕物质抛射,行星际动力学,空间天气

Full-Text   Cite this paper   Add to My Lib

Abstract:

?日冕物质抛射(CME)是太阳大气中频繁发生的最剧烈的爆发现象之一,也是灾害性空间天气事件最主要的驱动源,能在行星际空间乃至地球空间造成剧烈的扰动.行星际空间是CME爆发后影响地球空间环境的必经之路,在这过程中CME如何传播演化,对其最终的空间天气效应有着至关重要的影响.CME的行星际动力学过程涉及众多宏观与微观、线性与非线性等多时空尺度的问题,主要可以归纳为动量交换与输运、能量转化与输运以及磁通量转换与输运这三个方面.目前这些方面的认识和理解主要依赖于广角成像、射电频谱、多点局地等多种空间卫星探测手段和技术,随着探测技术的不断发展,人们对CME的行星际动力学过程必定会有更加深入甚至全新的了解.本文简要综述近年来在这方面的研究进展,以介绍国内外华人学者的工作为主,全面展现CME的行星际动力学过程.

References

[1]  1 Hudson H S, Bougeret J L, Burkepile J. Coronal mass ejections: Overview of observations. Space Sci Rev, 2006, 123: 13-30
[2]  2 Vourlidas A, Subramanian P, Dere K P, et al. Large-angle spectrometric coronagraph measurements of the energetics of coronal mass ejections. Astrophys J, 2000, 534: 456-467
[3]  3 Lepping R P, Jones J A, Burlaga L F. Magnetic field structure of interplanetary magnetic clouds at 1 AU. J Geophys Res, 1990, 95: 11957-11965
[4]  4 Wang Y, Ye P, Zhou G, et al. The interplanetary responses to the great solar activities in late October 2003. Sol Phys, 2005, 226: 337-357
[5]  9 Yashiro S, Gopalswamy N, Michalek G, et al. A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J Geophys Res, 2004, 109, doi: 10.1029/2003JA010282
[6]  10 Kaiser M L, Kucera T A, Davila J M, et al. The STEREO mission: An introduction. Space Sci Rev, 2007, 136: 5-16
[7]  11 Howard R A, Moses J D, Vourlidas A, et al. Sun earth connection coronal and heliospheric investigation (SECCHI). Space Sci Rev, 2008, 136: 67-115
[8]  12 Harrison R A, Davis C J, Davies J A. Pre-CME onset fuses--Do the STEREO heliospheric imagers hold the clues to the CME onset process? Sol Phys, 2009, 259: 277-296
[9]  13 Bougeret J L, Kaiser M L, Kellogg P J, et al. WAVES: The radio and plasma wave investigation on the wind spacecraft. Space Sci Rev, 1995, 71: 231-263
[10]  14 Saito K, Poland A I, Munro R H. A study of the background corona near solar minimum. Sol Phys, 1977, 55: 121-134
[11]  15 Shen C, Wang Y, Ye P, et al. Strength of coronal mass ejection-driven shocks near the sun and their importance in predicting solar energetic particle events. Astrophys J, 2007, 670: 849-856
[12]  16 Burlaga L, Sittler E, Mariani F, et al. Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J Geophys Res, 1981, 86: 6673-6684
[13]  17 Zhang J, Dere K P. A statistical study of main and residual accelerations of coronal mass ejections. Astrophys J, 2006, 649: 1100-1109
[14]  18 Zhang J, Dere K P, Howard R A, et al. On the temporal relationship between coronal mass ejections and flares. Astrophys J, 2001, 559: 452-462
[15]  19 Zhang J, Dere K P, Howard R A, et al. A study of the kinematic evolution of coronal mass ejections. Astrophys J, 2004, 604: 420-432
[16]  20 Gallagher P T, Lawrence G R, Dennis B R. Rapid acceleration of a coronal mass ejection in the low corona and implications for propagation. Astrophys J, 2003, 588: L53-L56
[17]  21 Kundu M R, White S M, Garaimov V I, et al. Radio observations of rapid acceleration in a slow filament eruption/fast coronal mass ejection event. Astrophys J, 2004, 607: 530-539
[18]  22 Qiu J, Liu C, Gary D E, et al. Hard X-ray and microwave observations of microflares. Astrophys J, 2004, 612: 530-545
[19]  23 Sterling A C, Moore R L. Slow-rise and fast-rise phases of an erupting solar filament, and flare emission onset. Astrophys J, 2005, 630: 1148-1159
[20]  24 Qiu J, Wang H, Cheng C Z, et al. Magnetic reconnection and mass acceleration in flare-coronal mass ejection events. Astrophys J, 2004, 604: 900-905
[21]  25 Chen Y, Hu Y Q, Sun S J. Catastrophic eruption of magnetic flux rope in the corona and solar wind with and without magnetic reconnection. Astrophys J, 2007, 665: 1421-1427
[22]  26 Cargill P J. On the aerodynamic drag force acting on interplanetary coronal mass ejections. Sol Phys, 2004, 221: 135-149
[23]  27 Feng X S, Zhang Y, Sun W, et al. A practical database method for predicting arrivals of “average” interplanetary shocks at Earth. J Geophys Res, 2009, 114: 013499
[24]  28 Vourlidas A, Wu S T, Wang A H, et al. Direct detection of a coronal mass ejection-associated shock in large angle and spectrometric coronagraph experiment white-light images. Astrophys J, 2003, 598: 1392-1402
[25]  29 Cliver E W, Kahler S W, Reames D V. Coronal shocks and solar energetic proton events. Astrophys J, 2004, 605: 902-910
[26]  30 Emslie A G, Kucharek H, DennisB R, et al. Energy partition in two solar flare/CME events. J Geophys Res, 2004, 109: A10104
[27]  31 Gopalswamy N, Yashiro S, Krucker S, et al. Intensity variation of large solar energetic particle events associated with coronal mass ejections. J Geophys Res, 2004, 109: 010602
[28]  32 Yermolaev Y I, Yermolaev M Y, Zastenker G N, et al. Statistical studies of geomagnetic storm dependencies on solar and interplanetary events: A review. Planet Space Sci, 2005, 53: 189-196
[29]  33 Webb D F, Cliver E W, Crooker N U, et al. Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms. J Geophys Res, 2000, 105: 7491
[30]  34 Cremades H, Bothmer V. On the three-dimensional configuration of coronal mass ejections. Astron Astrophys, 2004, 422: 307-322
[31]  35 MacQueen R M, Hundhausen A J, Conover C W. The propagation of coronal mass ejection transients. J Geophys Res, 1986, 91: 31-38
[32]  36 Gui B, Shen C, Wang Y, et al. Quantitative analysis of CME deflections in the corona. Sol Phys, 2011, 271: 111-139
[33]  37 Shen C, Wang Y, Gui B, et al. Kinematic evolution of a slow CME in corona viewed by STEREO-B on 8 October 2007. Sol Phys, 2011, 269: 389-400
[34]  38 Wang Y, Shen C, Wang S, et al. Deflection of coronal mass ejection in the interplanetary medium. Sol Phys, 2004, 222: 329-343
[35]  39 Wang Y, Zhou G, Ye P, et al. A study of the orientation of interplanetary magnetic clouds and solar filaments. Astrophys J, 2006, 651: 1245-1255
[36]  40 Shen C, Wang Y, Wang S, et al. Super-elastic collision of large-scale magnetized plasmoids in the heliosphere. Nat Phys, 2012, 8: 923-928
[37]  41 Akmal A, Raymond J C, Vourlidas A, et al. SOHO observations of a coronal mass ejection. Astrophys J, 2001, 553: 922-934
[38]  42 Ciaravella A, Raymond J C, Reale F, et al. 1997 December 12 helical coronal mass ejection. II. Density, energy estimates, and hydrodynamics. Astrophys J, 2001, 557: 351-365
[39]  43 Liu Y, Richardson J D, Belcher J W. A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU. Planet Space Sci, 2005, 53: 3-17
[40]  44 Wang Y, Zhang J, Shen C. An analytical model probing the internal state of coronal mass ejections based on observations of their expansions and propagations. J Geophys Res, 2009, 114: 014360
[41]  45 Kumar A, Rust D M. Interplanetary magnetic clouds, helicity conservation, and current-core flux-ropes. J Geophys Res, 1996, 101: 15667- 15684
[42]  46 Smith C W, Vasquez B J, Hamilton K. Interplanetary magnetic fluctuation anisotropy in the inertial range. J Geophys Res, 2006, 111, doi: 10.1029/2006JA011651
[43]  47 Belcher J W, Davis L. Large-amplitude Alfvén waves in the interplanetary medium, 2. J Geophys Res, 1971, 76: 3534-3563
[44]  48 Yao S, Marsch E, Tu C Y, et al. Identification of prominence ejecta by the proton distribution function and magnetic fine structure in interplanetary coronal mass ejections in the inner heliosphere. J Geophys Res, 2010, 115: 014914
[45]  49 Marsch E, Ao X Z, Tu C Y. On the temperature anisotropy of the core part of the proton velocity distribution function in the solar wind. J Geophys Res, 2004, 109: 010330
[46]  50 Liang H, Xiao C, Zhou G, et al. Alfvénic fluctuations in an interplanetary coronal mass ejection observed near 1 AU. Plasma Sci Technol, 2012, 14: 102-106
[47]  51 Ryan J M A, Axford W I. The behaviour of minor species in the solar wind. J Geophys Res, 1975, 41: 221-232
[48]  52 Hollweg J V. Alfven waves in the solar atmosphere. Sol Phys, 1981, 70: 25-66
[49]  53 Marsch E, Goertz C K, Richter K. Wave heating and acceleration of solar wind ions by cyclotron resonance. J Geophys Res, 1982, 87: 5030-5044
[50]  54 Isenberg P A. Resonant acceleration and heating of solar wind ions: Anisotropy and dispersion. J Geophys Res, 1984, 89: 6613-6622
[51]  55 Cranmer S R. Ion cyclotron diffusion of velocity distributions in the extended solar corona. J Geophys Res, 2001, 106: 24937-24954
[52]  56 Gary S P, Goldstein B E, Steinberg J T. Helium ion acceleration and heating by Alfvén/cyclotron fluctuations in the solar wind. J Geophys Res, 2001, 106: 24955-24963
[53]  57 Tu C Y, Marsch E. On cyclotron wave heating and acceleration of solar wind ions in the outer corona. J Geophys Res, 2001, 106: 8233- 8252
[54]  58 Hollweg J V, Isenberg P A. Generation of the fast solar wind: A review with emphasis on the resonant cyclotron interaction. J Geophys Res, 2002, 107: 000270
[55]  59 Vocks C, Marsch E. Kinetic results for ions in the solar corona with wave-particle interactions and coulomb collisions. Astrophys J, 2002, 568: 1030-1042
[56]  62 White R, Chen L, Lin Z. Resonant plasma heating below the cyclotron frequency. Phys Plasmas, 2002, 9: 1890
[57]  63 Voitenko Y, Goossens M. Cross-field heating of coronal ions by low-frequency kinetic Alfvn waves. Astrophys J, 2004, 605: L149-L152
[58]  64 Wang C, Wu C, Yoon P. Heating of ions by Alfvén waves via nonresonant interactions. Phys Rev Lett, 2006, 96: 125001
[59]  65 Lu Q, Li X. Heating of ions by low-frequency Alfven waves. Phys Plasmas, 2007, 14: 042303
[60]  66 Wu C, Yoon P. Proton heating via nonresonant scattering off intrinsic alfvénic turbulence. Phys Rev Lett, 2007, 99: 075001
[61]  67 Lu Q, Chen L. Ion heating by a spectrum of obliquely propagating low-frequency Alfvén waves. Astrophys J, 2009, 704: 743-749
[62]  68 Wang C B, Wu C S. Pseudoheating of protons in the presence of Alfvénic turbulence. Phys Plasmas, 2009, 16: 020703
[63]  5 Vourlidas A, Howard R A. The proper treatment of coronal mass ejection brightness: A new methodology and implications for observations. Astrophys J, 2006, 642: 1216-1221
[64]  6 Brueckner G E, Howard R A, Koomen M J, et al. The large angle spectroscopic coronagraph (LASCO). Sol Phys, 1995, 162: 357-402
[65]  7 St Cyr O C, Howard R A, Sheeley N R, et al. Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. J Geophys Res, 2000, 105: 18169
[66]  8 Wang Y, Chen C, Gui B, et al. Statistical study of coronal mass ejection source locations: Understanding CMEs viewed in coronagraphs. J Geophys Res, 2011, 116: A04104
[67]  60 Tu C Y, Pu Z Y, Wei F S. The power spectrum of interplanetary Alfvénic fluctuations: Derivation of the governing equation and its solution. J Geophys Res, 1984, 89: 9695-9702
[68]  61 Chen L, Lin Z, White R. On resonant heating below the cyclotron frequency. Phys Plasmas, 2001, 8: 4713
[69]  69 Chandran B D G, Pongkitiwanichakul P, Isenberg P A, et al. Resonant interactions between protons and oblique Alfvén/Ion-cyclotron waves in the solar corona and solar flares. Astrophys J, 2010, 722: 710-720
[70]  70 Zurbuchen T H, Richardson I G. In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci Rev, 2006, 123: 31-43
[71]  71 Qiu J, Hu Q, Howard T A, et al. On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys J, 2007, 659: 758-772
[72]  72 Hu Q S, Bengt U ?. Reconstruction of two-dimensional structures in the magnetopause: Method improvements. J Geophys Res, 2003, 108: 009323
[73]  73 Zhang J, Cheng X, Ding M D. Observation of an evolving magnetic flux rope before and during a solar eruption. Nat Commun, 2012, 3: 747
[74]  74 Lin J, Forbes T G. Effects of reconnection on the coronal mass ejection process. J Geophys Res, 2000, 105: 2375
[75]  75Antiochos S K, DeVore C R, Klimchuk J A. A model for solar coronal mass ejections. Astrophys J, 1999, 510: 485-493
[76]  76 Lin J, van Ballegooijen A A. Equilibrium and evolution in multipolar magnetic configurations resulting from interactions among active regions. Astrophys J, 2005, 629: 582-591
[77]  77 Zhou G P, Xiao C J, Wang J X, et al. A current sheet traced from the sun to interplanetary space. Astron Astrophys, 2010, 525: A156
[78]  78 Larson D E, Lin R P, McTiernan J M, et al. Tracing the topology of the October 18-20, 1995, magnetic cloud with ~0.1-102 keV electrons. Geophys Res Lett, 1997, 24: 1911
[79]  79 Shodhan S, Crooker N U, Kahler S W, et al. Counterstreaming electrons in magnetic clouds. J Geophys Res, 2000, 105: 27261
[80]  80 Crooker N U. Counterstreaming electrons in magnetic clouds near 5 AU. J Geophys Res, 2004, 109: 010426
[81]  81 Wang Y, Wei F S, Feng X S, et al. Energetic electrons associated with magnetic reconnection in the magnetic cloud boundary layer. Phys Rev Lett, 2010, 105, doi: 10.1103/PhysRevLett.105.195007
[82]  82 McAllister A H, Knipp D J, Crocker N U, et al. Identification of solar drivers: The November 3-4, 1993, geomagnetic storm. J Geophys Res, 1998, 103: 26221-26233
[83]  83 Feng H Q, Wu D J, Zhao J K. Discussion on the identification of magnetic cloud boundaries using cloud natural coordinate system. Chin Astron Astr, 2007, 31: 146-163

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133