23 Detman T, Smith Z, Dryer M, et al. A hybrid heliospheric modeling system: Background solar wind. J Geophys Res, 2006, 111: A07102
[2]
24 Nakamizo A, Tanaka T, Kubo Y, et al. Development of the 3-D MHD model of the solar corona-solar wind combining system. J Geophys Res, 2009, 114: A07109
[3]
25 Usmanov A V. Goldstein M L. Three-dimensional MHD modeling of the solar corona and solar wind. In: Solar Wind Ten, Proceedings of the Tenth International Solar Wind Conference. AIP Conf Proc, 2003, 679: 393-398
27 Tóth G, Sokolov I V, Gombosi T I, et al. Space weather modeling framework: A new tool for the space science community. J Geophys Res, 2005, 110(A12): A12226
[6]
28 Tóth G, van der Holst Bart, Sokolov I V, et al. Adaptive numerical algorithms in space weather modeling. J Comput Phys, 2012, 231: 870-903
[7]
29 Powell K G, Philip L R, Timur J L, et al. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J Comput Phys, 1999, 154: 284-309
[8]
30 Ilie R, Liemohn M W, Kozyra J, et al. An investigation of the magnetosphere-ionosphere response to real and idealized co-rotating interaction region events through global magnetohydrodynamic simulations. Proc R Soc A, 2010, 466: 3279-3303
[9]
31 Groth C P T, de Zeeuw D L, Gombosi T I, et al. Global three-dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere. J Geophys Res, 2000, 105(A11): 25053-25078
[10]
32 Roussev I I, Forbes T G, Gombosi T I, et al. A three-dimensional flux rope model for coronal mass ejections based on a loss of equilibrium. Astrophys J, 2003, 588: L45-L48
[11]
33 Usmanov A V, Goldstein M L, Besser B P, et al. A global MHD solar wind model with WKB Alfvén waves: Comparison with Ulysses data. J Geophys Res, 2000, 105(A6): 12675-12696
[12]
34 Jin M, Manchester W B, van der Holst B, et al. A global two-temperature corona and inner heliosphere model: A comprehensive validation study. Astrophys J, 2012, 745: 6
[13]
35 Cohen O, Sokolov I V, Roussev I I, et al. Validation of a global 3D heliospheric model with observations for the May 12, 1997 CME event. J Atmos Sol-Terr Phys, 2008,70: 583-592
[14]
36 Tóth G, de Zeeuw D L, Gombosi T I, et al. Sun-to-thermosphere simulation of the 28-30 October 2003 storm with the space weather modeling framework. Space Weather, 2007, 5: S06003
[15]
37 Roussev I I, Gombosi T, Sokolov I V, et al. A three dimensional model of solar wind incorporating solar magnetogram observations. Astrophys J, 2003, 595: L57-L61
[16]
38 Titov V S, Demoulin P. Basic topology of twisted magnetic configurations in solar flares. Astron Astrophys, 1999, 351: 701-720
[17]
39 Lugaz N, Roussev I I. Numerical modeling of interplanetary coronal mass ejections and comparison with heliospheric images. J Atmos Sol-Terr Phys, 2011, 73: 1187-1200
[18]
40 Lee C O, Luhmann J G, Odstrcil D, et al. The solar wind at 1 AU during the declining phase of Solar Cycle 23: Comparison of 3D numerical model results with observations. Sol Phys, 2009, 254: 155-183
[19]
41 Riley P, Linker J A, Lionello R, et al. Corotating interaction regions during the recent solar minimum: The power and limitations of global MHD modeling. J Atmos Sol-Terr Phys, 2012, 83: 1-10
[20]
42 Lionello R, Mikic Z, Schnack D D, et al. Magnetohydrodynamics of solar coronal plasmas in cylindrical geometry. J Comput Phys, 1998, 140: 172-201
[21]
43 Miki? Z, Linker J A, Schnack D D, et al. Magnetohydrodynamic modeling of the global solar corona. Phys Plasmas,1999, 6: 2217-2224
[22]
44 Linker J A, Lionello R, Miki? Z, et al. The evolution of open magnetic flux driven by photospheric dynamics. Astrophy J, 2011, 731: 110
[23]
45 Riley P, Linker J A, Mikic Z. An empirically-driven global MHD model of the solar corona and inner heliosphere. J Geophys Res, 2001, 106(A8): 15889-15901
[24]
77 Jiang C W, Feng X S, Fan Y L, et al. Reconstruction of the coronal magnetic field using the CESE-MHD method. Astrophys J, 2011, 727: 101
[25]
78 Jiang C W, Feng X S, Xiang C Q. A new code for nonlinear force-free field extrapolation of the global corona. Astrophys J, 2012, 755: 62
[26]
79 Zhou Y F, Feng X S. Numerical study of successive CMEs during November 4-5, 1998. Sci China Ser E-Tech Sci, 2008, 51: 1-11
[27]
80 Zhou Y F, Feng X S, Wu S T. Numerical simulation of the 12 May 1997 CME event. Chin Phys Lett, 2008, 25: 790-793
[28]
81 Zhou Y F, Feng X S, Wu S T, et al. Using a 3-D spherical plasmoid to interpret the Sun-to-Earth propagation of the 4 November 1997 coronal mass ejection event. J Geophys Res, 2012, 117: A01102
[29]
82 Majda A, Osher S. Propagation of error into regions of smoothness for accurate difference approximations to hyperbolic equations. Commun Pur Appl Math, 1977, 30: 671-705
[30]
83 Greenough J A, Rider W J. A quantitative comparison of numerical methods for the compressible Euler equations: Fifth-order WENO and piecewise-linear Godunov. J Comput Phys, 2004, 196: 259-281
[31]
84 Rider W, Kamm J. How effective are high-order approximations in shock-capturing methods? Is there a law of diminishing returns? In: Groth C, Zingg D W, eds. Computational Fluid Dynamics 2004. Heidelberg: Springer, 2006. 401-405
[32]
85 Cook A W, Cabot W H, Greenough J A. A high-order method for shock-induced mixing, Tech Rep, UCRL-JC-144109, Lawrence Livermore National Laboratory, 2001
[33]
86 Tafti D. Comparison of some upwind-biased high-order formulations with a second-order central-difference scheme for time integration of the incompressible Navier-Stokes equations. Comput Fluids, 1996, 25: 647-665
[34]
87 Shen C, Qiu J M, Christlieb A. Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations. J Comput Phys, 2011, 230: 3780-3802
[35]
88 Berger M J, Colella P. Local adaptive mesh refinement for shock hydrodynamics. J Comput Phys, 1989, 82: 64-84
[36]
89 Keppens R, Meliani Z, van Marle A, et al. Parallel, grid-adaptive approaches forrelativistic hydro and magnetohydrodynamics. J Comput Phys, 2012, 231: 718-744
[37]
90 Yalim M S, Vanden A D, Lani A, et al. A finite volume implicit time integration method for solving the equations of ideal magnetohydrodynamics for the hyperbolic divergence cleaning approach. J Comput Phys, 2011, 230: 6136-6154
[38]
91 Brackbill J U, Barnes D C. The effect of nonzero product of magnetic gradient and B on the numerical solution of the magnetohydrodynamic equations. J Comput Phys, 1980, 35: 426-430
[39]
92 Balsara D S. Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys J Suppl Ser, 2004, 151: 149-184
[40]
93 Gardiner T A, Stone J M. An unsplit Godunov method for ideal MHD via constrained transport. J Comput Phys, 2005, 205: 509-539
[41]
94 Gardiner T A, Stone J M. An unsplit Godunov method for ideal MHD via constrained transport in three dimensions. J Comput Phys, 2008, 227: 4123-4141
[42]
95 Balsara D S. Total variation diminishing scheme for relativistic magnetohydrodynamics. Astrophys J Suppl Ser, 2001, 132: 83-101
[43]
96 Balsara D S. Total variation diminishing scheme for adiabatic and isothermal magnetohydrodynamics. Astrophys J Suppl Ser, 1998, 116: 133-153
[44]
97 Zhang M, John Yu S T, Lin S C, et al. Solving the MHD equations by the space time conservation element and solution element method. J Comput Phys, 2006, 214: 599-617
[45]
98 Feng X S, Hu Y Q, Wei F S. Modeling the resistive MHD by the CESE method. Sol Phys, 2006, 235: 235-257
[46]
102 Gurski K. An HLLC-type approximate Riemann solver for ideal magnetohydrodynamics. SIAM J Sci Comput. 2004, 25: 2165-2187
[47]
103 Miyoshi T, Kusano K. A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics. J Comput Phys, 2005, 208: 315-344
[48]
104 Fuchs F G, Mishra S, Risebro N H. Splitting based finite volume schemes for ideal MHD equations, J Comput Phys, 2009, 228: 641-660
[49]
105 Balsara D S. Multidimensional HLLE Riemann solver: Application to Euler and magnetohydrodynamic flows. J Comput Phys, 2010, 229: 1970-1993
[50]
109 Jiang G S, Wu C C. A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. J Comput Phys, 1999, 150: 561-594
[51]
110 Shang J. Three decades of accomplishments in computational fluid dynamics. Prog Aerosp Sci, 2004, 40: 173-197
[52]
111 Shen Y Q, Zha G C, Huerta M A. E-CUSP scheme for the equations of magnetothydrodynamics with high order WENO scheme. AIAA Paper 2011-383, 2011, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 4-7 January 2011, Orlando, Florida
[53]
112 Shen Y, Zha G, Huerta M A. E-cusp scheme for the equations of ideal magnetohydrodynamics with high order WENO scheme. J Comput Phys, 2012, 231: 6233-6247
[54]
113 Roe P L, Balsara D S. Notes on the eigensystem of magnetohydrodynamics. SIAM J Appl Math, 1996, 56: 57-67
[55]
54 McGregor S L, Hughes W J, Arge C N, et al. The radial evolution of solar wind speeds. J Geophys Res, 2011, 116: A03106
[56]
55 Riley P, Lionello R, Linker J A, et al. Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval. Sol Phys, 2011, 274: 361-377
[57]
56 Zhao X P, Plunkett S P, Liu W. Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model. J Geophy Res, 2002, 107: 1223-1231
[58]
57 Pizzo V, Millward G, Parsons A, et al. Wang-Sheeley-Arge-Enlil cone model transitions to operations. Space Weather, 2011, 9: S03004
[59]
58 Taktakishvili A M, Pulkkinen S P, Chulaki A, et al. Validation of the coronal mass ejection predictions at the Earth orbit estimated by ENLIL heliosphere cone model. Space Weather, 2009, 7: S03004
[60]
59 Taktakishvili A, Pulkkinen A, MacNeice P, et al. Modeling of coronal mass ejections that caused particularly large geomagnetic storms using ENLIL heliosphere cone model. Space Weather, 2011, 9: S06002
61 Shen F, Feng X S, Song W B. An asynchronous and parallel time-marching method: application to three-dimensional MHD simulation of solar wind. Sci China Ser E-Tech Sci, 2009, 52: 2895-2902
[63]
62 Shen F, Feng X S, Xiang C Q, et al. The statistical and numerical study of the global distribution of coronal plasma and magnetic field near 2.5 Rs over a 10-year period. J Atmos Sol-Terr Phys, 2010, 72: 1008-1018
[64]
63 Shen F, Feng X S, Xiang C Q. Improvement to the global distribution of coronal plasma and magnetic field on the source surface using expansion factor fs and angular distance q b. J Atmos Sol-Terr Phys, 2011, 77: 125-131
[65]
64 Shen F, Feng X, Wu S T, et al. Three-dimensional MHD simulation of CMEs in three-dimensional background solar wind with the self-consistent structure on the source surface as input: Numerical simulation of the January 1997 Sun-Earth connection event. J Geophys Res, 2007, 112: A06109
[66]
65 Shen F, Feng X S, Wang Y, et al. Three-dimensional MHD simulation of two coronal mass ejections’ propagation and interaction using a successive magnetized plasma blobs model. J Geophys Res, 2011, 116: A09103
[67]
66 Feng X S, Zhou Y F, Wu S T. A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method. Astrophys J, 2007, 655: 1110-1126
[68]
67 Feng X S, Yang L P, Xiang C Q, et al. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid. Astrophys J, 2010, 723: 300
[69]
68 Feng X S, Yang L P, Xiang C Q, et al. Validation of the 3D AMR SIP-CESE solar wind model for four Carrington rotations. Sol Phys, 2012, 279: 207-229
[70]
69 Feng X S, Zhang S H, Xiang C Q, et al. A hybrid solar wind model of the CESE+HLL method with a Yin-Yang overset grid and an AMR grid. Astrophys J, 2011, 734: 50
[71]
70 Jiang C W, Feng X S, Zhang J, et al. AMR simulations of magnetohydrodynamic problems by the CESE method in curvilinear coordinates. Sol Phys, 2010, 267: 463-491
[72]
71 Feng X S, Yang L P, Xiang C Q, et al. Numerical study of the global corona for CR 2055 Driven by daily updated synoptic magnetic field. In: Pogorelov N V, Font J A, Audit E, eds. Numerical Modeling of Space Plasma Flows (Astronum 2011), ASP Conf. Ser. 459, 13-17 June 2011, Valencia, Spain. San Francisco: Astronomical Society of the Pacific, 2012. 202-208
[73]
72 Yang L P, Feng X S, Xiang C Q, et al. Time-dependent MHD modeling of the global solar corona for year 2007: Driven by daily-updated magnetic field synoptic data. J Geophys Res, 2012, 117: A08110
[74]
73 Feng X S, Jiang C W, Xiang C Q, et al. A data-driven model for the global coronal evolution. Astrophys J, 2012, 758: 62
[75]
74 Hu Y Q, Feng X S, Wu S T, et al. Three-dimensional MHD modeling of the global corona throughout solar cycle 23. J Geophys Res, 2008, 113: A03106
[76]
75 Yang L P, Feng X S, Xiang C Q, et al. Numerical validation and comparison of three solar wind heating methods by the SIP-CESE MHD Model. Chin Phys Lett, 2011, 28: 039601
[77]
76 Yang L P, Feng X S, Xiang C Q, et al. Simulation of the unusual solar minimum with 3D SIP-CESE MHD Model by comparison with multi-satellite observations. Sol Phys, 2011, 271: 91-110
[78]
99 Jameson L. AMR vs high order schemes. J Sci Comput, 2003, 18: 1-24
[79]
100 Roe P L. Characteristic-based schemes for the Euler equations. Annu Rev Fluid Mech, 1986, 18: 337-365
[80]
101 Janhunen P A. Positive conservative method for magnetohydrodynamics based on HLL and Roe methods. J Comput Phys, 2000, 160: 649-661
[81]
106 Miyoshi T, Terada N, Matsumoto Y, et al. The HLLD approximate Riemann solver for magnetospheric simulation. IEEE T Plasma Sci, 2010, 38: 2236-2242
[82]
107 Ziegler U. A semi-discrete central scheme for magnetohydrodynamics on orthogonal curvilinear grids. J Comput Phys, 2011, 230: 1035-1063
[83]
108 MacCormack R W. An upwind conservation form method for ideal magnetohydrodynamics equations. AIAA Paper 99-3609, 1999, 30th Plasmadynamics and Laser Conference, 28 June-1 July 1999, Norfolk, Virginia
[84]
46 Riley P, Linker J A, Mikic Z. Modeling the heliospheric current sheet: Solar cycle variations. J Geophys Res, 2002, 107: 1136
[85]
47 Tóth G, Odstrcil D. Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J Comput Phys, 1996, 128: 82-100
[86]
48 Odstrcil D, Pizzo V J. Distortion of interplanetary magnetic field by three-dimensional propagation of CMEs in a structured solar wind. J Geophys Res, 1999, 104(A12): 28225-28239
[87]
49 Odstrcil D. Modeling 3D solar wind structure. Adv Space Res, 2003, 32: 497-506
[88]
50 Odstrcil D, Riley P, Zhao X P. Numerical simulation of the 12 May 1997 interplanetary CME event. J Geophys Res, 2004, 109: A02116
[89]
51 Odstrcil D, Riley P, Zhao X P. Propagation of the 12 May 1997 interplanetary coronal mass ejection in evolving solar wind structures. J Geophys Res, 2005, 110: A02106
[90]
52 Owens M J, Spence H E, McGregor S, et al. Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations. Space Weather, 2008, 6: S08001
[91]
53 McGregor S L, Hughes W J, Arge C N, et al. The distribution of solar wind speeds during solar minimum: Calibration for numerical solar wind modeling constraints on the source of the slow solar wind. J Geophys Res, 2011, 116: A03101
[92]
1 Baker D N. How to cope with space weather? Science, 2002, 297: 1486-1487
5 Belov A V, Gaidash S P, Ivanov K G, et al. Unusually high geomagnetic activity in 2003. Cosm Res, 2004, 42: 541-550
[97]
6 Gopalswamy N. Highlights of the October-November 2003 extreme events. In: Chilingarian A, Karapetyan G, eds. Solar Extreme Events: Fundamental Science and Applied Aspects. Yerevan: Alikhanyan Physics Institute, 2006. 20-24
[98]
7 Dmitriev A V, Suvorova A V. Geosynchronous magnetopause crossings on October 29-31, 2003. Cosm Res, 2004, 42: 551-560
[99]
8 Yizengaw E, Moldwin M B, Dyson P L, et al. Southern hemisphere ionosphere and plasmasphere response to the interplanetary shock event of 29-31 October 2003. J Geophys Res, 2005, 110: A09S30
[100]
9 López-Puertas M, Funke B, Gil-López S, et al. Observation of NOx enhancement and ozone depletion in the northern and southern hemispheres after the October-November 2003 solar proton events. J Geophys Res, 2005, 110: A09S43
[101]
10 Webb D, Allen J. Spacecraft and ground anomalies related to the October-November 2003 solar activity. Space Weather, 2004, 2: S03008
[102]
11 Barbieri L P, Mahmot R E. October--November 2003’s space weather and operations lessons learned. Space Weather, 2004, 2: S09002
[103]
12 Doherty P, Coster A J, Murtagh W. Space weather effects of October-November 2003. GPS Solutions, 2004, 8: 267-271
[104]
13 Baker D N. What is space weather? Adv Space Res, 1998, 22: 7-16
[105]
14 Siscoe G. The space-weather enterprise: Past, present and future. J Atmos Solar-Terr Phys, 2000, 62: 1223-1232
[106]
15 Kappenman J G. An introduction to power grid impacts and vulnerabilities from space weather. In: Daglis I A, ed. Space Storms and Space Weather Hazards. Dordrecht: Kluwer Academic, 2001. 335-361
[107]
16 曹晋滨. 空间天气学研究进展. 中国科学院院刊, 2005, 20: 277-282
[108]
17 方成. 走进我们生活的新学科. 中国自然科学杂志, 2006, 28: 194-198
[109]
18 Robinson R M, Behnke R A. The US National Space Weather program: A retrospective. In: Song P, Singer H J, Siscoe G L, eds. Space Weather, Geophys Monograph 125. Washington D C: American Geophysical Union, 2001. 1-10
22 Dryer M. Space weather simulation in 3D MHD from the Sun to the Earth and beyond to 100AU: A modeler’s perspective of the present state of the art. Asian J Phys, 2007, 16: 97-121