全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf-O同位素研究

, PP. 760-778

Keywords: 高分异,四分组效应,花岗岩,燕山期早期,赣南

Full-Text   Cite this paper   Add to My Lib

Abstract:

?华南南岭地区广泛分布燕山早期花岗岩,其中大型花岗岩基常常分布在南岭腹地(粤中,北地区),而南岭北缘的赣南地区分布许多小岩体,并大量伴生有具工业价值的稀有金属矿床(W,Sn,Nb和Ta).本文系统研究了赣南地区侵入龙源坝杂岩体中的3个燕山期小岩体,研究表明它们的主要岩性为黑云母花岗岩和二云母花岗岩.获得的龙源坝-澄江和小幕北黑云母花岗岩的SIMS和LA-ICPMS锆石U-Pb年龄分别为(156.7±1.2)和(156.1±2.1)Ma,江头东二云母花岗岩SIMS锆石U-Pb年龄为(156.4±1.3)Ma.黑云母花岗岩以高硅(SiO2=70%~79%),高钾(K2O/Na2O>1.9)和过铝质(ASI=1.05~1.33)为特征.微量元素和稀土元素组成上,富集Rb,Th,Pb和LREE,贫Ba,Nb,Sr,P和Ti,轻重稀土分异明显((La/Yb)N=10.7~13.5),Eu负异常(δEu=0.28~0.41);二云母花岗岩也具有高硅(SiO2=75%~79%),高钾(K2O/Na2O>1.2)和过铝质(ASI=1.09~1.17)特征.更富集Rb,Th,Pb和强烈亏损Ba,Nb,Sr,P和Ti,轻重稀土分异不明显((La/Yb)N=0.75~1.08),Eu负异常十分强烈(δEu=0.02~0.04),具有明显的稀土四分组特征(TE1.3=1.10~1.14).黑云母花岗岩和二云母花岗岩具有相似的Nd同位素特征,εNd(t)分别为-13.0~-9.6和-11.5~-7.7,锆石Hf-O同位素组成也相似,黑云母花岗岩εHf(t)=-10.8~-7.9,δ18O=7.98‰~8.89‰和εHf(t)=-13.8~-9.1,δ18O=8.31‰~10.08‰;二云母花岗岩εHf(t)=-11.3~-8.0,δ18O=7.91‰~9.77‰,反映它们来自以沉积物为主的地壳源区,并有小比例的地幔物质的贡献.尽管黑云母花岗岩具有许多S-型花岗岩的地球化学特征,分析表明它们更可能来自于具I-型花岗岩特征的原始岩浆结晶分异和同化混染富铝的沉积围岩所造成,因此为高分异I-型花岗岩.二云母花岗岩具有稀土元素四分组特征,但是有与黑云母花岗岩相似的同位素特征,因此也属于高分异I-型花岗岩.稀土元素四分组效应是由于经历去气作用的晚期岩浆流体的交代造成.不存在流体的单一体系条件下花岗质岩浆结晶分异以及同化混染作用形成的是没有稀土元素四分组效应的高分异花岗岩,存在流体的多元体系条件下岩浆演化晚期,经历了熔体-流体的分离以及流体-气相的分离作用,并产生自交代作用才可能形成具有稀土元素四分组特征的海鸥型高分异花岗岩.稀土元素四分组特征是华南燕山早期稀有金属成矿的重要标志,反映了成矿流体的交代作用.

References

[1]  1 Chappell B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 1999, 46: 535-551
[2]  2 Li X H, Li Z X, Li W X, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos, 2007, 96: 186-204
[3]  3 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题. 岩石学报, 2007, 23: 1217-1238
[4]  4 赵振华, 增田彰正, 夏巴尼 M B. 稀有金属花岗岩的稀土元素四分组效应. 地球化学, 1992: 221-233
[5]  5 Zhao Z H, Xiong X L, Hen X D, et al. Controls on the REE tetrad effect in granites: Evidence from the Qianlishan and Baerzhe granites, China. Geochem J, 2002, 36: 527-543
[6]  6 华仁民, 张文兰, 陈培荣, 等. 赣南大吉山与漂塘花岗岩及有关成矿作用特征对比. 高校地质学报, 2003, 9: 609-619
[7]  7 李献华, 李武显, 李正祥. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 2007, 52: 981-992
[8]  8 肖剑, 王勇, 洪应龙, 等. 西华山钨矿花岗岩地球化学特征及与钨成矿的关系. 东华理工大学学报: 自然科学版, 2009, 32: 22-31
[9]  9 黄会清, 李献华, 李武显, 等. 南岭大东山花岗岩的形成时代与成因—SHRIMP锆石U-Pb年龄, 元素和Sr-Nd-Hf同位素地球化学. 高校地质学报, 2008, 14: 317-333
[10]  13 张敏, 陈培荣, 黄国龙, 等. 南岭东段龙源坝复式岩体La-ICP-MS锆石U-Pb年龄及其地质意义. 地质学报, 2006, 80: 984-994
[11]  14 Li X H, Liu Y, Li Q L, et al. Precise determination of Phanerozoic zircon Pb/Pb age by multi-collector SIMS without external standardization. Geochem Geophys Geosyst, 2009, 10: 1-21
[12]  15 Pearce N J G, Perkins W T, Westgate J A, et al. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl, 1997, 21:115-144
[13]  16 Black L P, Kamo S L, Allen C M, et al. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chem Geol, 2003, 200: 155-170
[14]  17 Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol, 2008, 257: 34-43
[15]  18 Wiedenbeck M, Hanchar J M, Peck W H, et al. Further characterisation of the 91500 zircon crystal. Geostand Geoanalyt Res, 2004, 28: 9-39
[16]  19 Li X H, Li W X, Li Q L, et al. Petrogenesis and tectonic significance of the ~850 Ma Gangbian alkaline complex in South China: Evidence from in-situ zircon U-Pb and Hf-O isotopes and whole-rock geochemistry. Lithos, 2010, 114: 1-15
[17]  20 Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol, 2006, 234: 105-126
[18]  21 谢烈文, 张艳斌, 张辉煌, 等. 锆石/斜锆石U-P和Lu-Hf同位素以及微量元素成分的同时原位测定. 科学通报, 2008, 53: 220-228
[19]  22 Li X H, Li Z X, Wingate M T D, et al. Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia? Precambrian Res, 2006, 146: 1-15
[20]  23 刘颖, 刘海臣, 李献华. 用ICP-MS准确测定岩石样品中的40余种微量元素. 地球化学, 1996, 25: 552-558
[21]  24 Chen J L, Xu J F, Wang B D, et al. Origin of Cenozoic alkaline potassic volcanic rocks at KonglongXiang, Lhasa terrane, Tibetan Plateau: Products of partial melting of a mafic lower-crustal source? Chem Geol, 2010, 273: 286-299
[22]  25 韦刚健, 梁细荣, 李献华, 等. (LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成. 地球化学, 2002, 31: 295-299
[23]  26 Li X H, Liu D Y, Sun M, et al. Precise Sm-Nd and U-Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China. Geol Mag, 2004, 141: 225-231
[24]  52 Kawabe I. Tetrad effects and fine structures of REE abundance patterns of granitic and rhyolitic rocks: ICP-AES determinations of REE and Y in eight GSJ reference rocks. Geochem J, 1995, 29: 213-230
[25]  53 Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta, 1999, 63: 489-508
[26]  54 赵振华, 熊小林, 韩小东. 花岗岩稀土元素四分组效应形成机理探讨—以千里山和巴尔哲花岗岩为例. 中国科学D辑: 地球科学, 1999, 29: 331-338
[27]  55 Monecke T, Kempe U, Trinkler M, et al. Unusual rare earth element fractionation in a tin-bearing magmatic-hydrothermal system. Geology, 2011, 39: 295-298
[28]  56 Bau M. The lanthanide tetrad effect in highly evolved felsic igneous rocks—Reply. Contrib Mineral Petrol, 1997, 128: 409-412
[29]  57 Mclennan S M. Rare-Earth element geochemistry and the “tetrad” effect. Geochim Cosmochim Acta, 1994, 58: 2025-2033
[30]  58 Monecke T, Kempf U, Monecke J, et al. Tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim Cosmochim Acta, 2002, 66: 1185-1196
[31]  59 张辉, 唐勇, 刘丛强, 等. 1 kbar, 800℃下REE在富磷过铝质熔体/流体相间分配的实验研究. 地学前缘, 2009, 16: 114-124
[32]  60 Shmulovich K I, Landwehr D, Simon K, et al. Stable isotope fractionation between liquid and vapour in water-salt systems up to 600°C. Chem Geol, 1999, 157: 343-354
[33]  61 Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol, 1996, 123: 323-333
[34]  62 Seiler R L, Stollenwerk K G, Garbarino J R. Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada. Appl Geochem, 2005, 20: 423-441
[35]  63 K?nig S, Münker C, Schuth S, et al. Mobility of tungsten in subduction zones. Earth Planet Sci Lett, 2008, 274: 82-92
[36]  64 K?nig S, Münker C, Hohl S, et al. The Earth''s tungsten budget during mantle melting and crust formation. Geochim Cosmochim Acta, 2011, 75: 2119-2136
[37]  10 邱检生, 胡建, McInnes B I A, 等. 广东龙窝花岗闪长质岩体的年代学, 地球化学及岩石成因. 岩石学报, 2004, 20:1363-1374
[38]  11 周新民. 南岭地区晚中生代花岗岩成因与岩石圈动力学演化. 北京: 科学出版社, 2007. 1-691
[39]  12 张敏, 陈培荣, 黄国龙, 等. 南岭龙源坝复式岩体的地球化学特征研究. 铀矿地质, 2006, 22: 336-344
[40]  27 Streckeisen A, Le Maitre R W. A chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jahrb Mineral Abh, 1979, 136: 169-206
[41]  28 Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic-rocks from Kastamonu area, Northern Turkey. Contrib Mineral Petrol, 1976, 58: 63-81
[42]  29 Bea F, Fershtater G, Corretge L G. The geochemistry of phosphorus in granite rocks and the effect of aluminium. Lithos, 1992, 29: 43-56
[43]  30 庄文明, 陈绍前, 黄友义. 佛冈复式岩体地质地球化学特征及其成岩源岩. 广东地质, 2000, 15: 1-12
[44]  31 徐夕生, 鲁为敏, 贺振宇. 佛冈花岗岩基及乌石闪长岩-角闪辉长岩体的形成年龄和起源. 中国科学D辑: 地球科学, 2007, 37: 27-38
[45]  32 Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc Lond Spec Publ, 1989: 313-345
[46]  33 He Z Y, Xu X S, Niu Y L. Petrogenesis and tectonic significance of a Mesozoic granite-syenite-gabbro association from inland South China. 2010, Lithos, 119: 621-641
[47]  34 李献华, 李武显, 王选策, 等. 幔源岩浆在南岭燕山早期花岗岩形成中的作用: 锆石原位Hf-O同位素制约. 中国科学D辑: 地球科学, 2009, 39: 872-887
[48]  35 Harrison T M, Watson E B. The behavior of apatite during crustal anatexis—Equilibrium and kinetic considerations. Geochim Cosmochim Acta, 1984, 48: 1467-1477
[49]  36 李献华, 李武显, 李正祥. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 2007, 52: 981-991
[50]  37 Valley J W, Lackey J S, Cavosie A J, et al. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol, 2005, 150: 561-580
[51]  38 Lesher C E. Decoupling of chemical and isotopic exchang during magma maxing. Nature, 1990, 344: 235-237
[52]  39 Chappell B W, White A J R. Two contrasting granite types: 25 years later. Aust J Earth Sci, 2001, 48: 489-499
[53]  40 汪洋. 南岭燕山早期花岗岩成因类型的进一步探讨. 地质论评, 2008, 54: 162-174
[54]  41 McCulloch M T, Chappell B W. Nd isotopic characteristics of S- and I-granites. Earth Planet Sci Lett, 1982, 58: 51-64
[55]  42 Collins W J. Lachlan Fold Belt granitoids: Products of three-component mixing. Trans R Soc Edinburgh Earth Sci, 1996, 87: 171-179
[56]  43 Collins W J. Evaluation of petrogenetic models for Lachlan Fold Belt granitoids: Implications for crustal architecture and tectonic models. Aust J Earth Sci, 1998, 45: 483-500
[57]  44 徐夕生, 周新民, 王德滋. 花岗岩中的钾长石巨晶:以南岭佛冈花岗质杂岩体中微斜长石巨晶为例. 高校地质学报, 2002, 8: 121-128
[58]  45 Masuda A, Kawakami O, Dohmoto Y, et al. Lanthanide tetrad effects in nature: Two mutually opposite types, W and M. Geochem J, 1987, 21: 119-124
[59]  46 Masuda A, Akagi T. Lanthanide tetrad effect observed in leucogranites from China. Geochem J,1989, 23: 245-253
[60]  47 赵振华, 包志伟, 乔玉楼. 一种特殊的“M”与“W”复合型稀土元素四分组效应: 以水泉沟碱性正长岩为例. 科学通报, 2010, 55: 1474-1488
[61]  48 Monecke T, Dulski P, Kempe U. Origin of convex tetrads in rare earth element patterns of hydrothermally altered siliceous igneous rocks from the Zinnwald Sn-W deposit, Germany. Geochim Cosmochim Acta, 2007, 71: 335-353
[62]  49 Yurimoto H, Duke E F, Papike J J, et al. Are discontinuous Chondrite-Normalized ree patterns in pegmatitic granite systems the results of monazite fractionation? Geochim Cosmochim Acta, 1990, 54: 2141-2145
[63]  50 Pan Y M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect—Discussion. Contrib Mineral Petrol, 1997, 128: 405-408
[64]  51 Takahashi Y, Yoshida H, Sato N, et al. W- and M-type tetrad effects in REE patterns for water-rock systems in the Tono uranium deposit, central Japan. Chem Geol, 2002, 184: 311-335

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133