全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

台风重力波的谱结构和动量通量特征分析

, PP. 874-882

Keywords: 平流层重力波,台风,三维谱,功率谱密度,动量通量

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用中尺度预报模式WRF针对2005年台风“麦莎”开展的数值模拟结果显示,在台风活动期间,其上空以台风为中心的区域中,持续地出现了显著平流层重力波.在此基础上,本文利用该数值模拟的数据进一步对台风诱发的平流层重力波进行谱结构分析和动量通量估计.结果显示:重力波谱结构呈明显的单峰窄谱结构,主要的波动具有1000km左右的水平尺度、12~18h的时间尺度、垂直波长大约为7~9km.这种单峰窄谱的谱结构与以往已研究的孤立对流单体等深对流系统所诱发的重力波谱结构特征并不相同.另外,功率谱和动量通量谱分量集中分布在水平波数大于零的部分(kh>0),这种不对称的分布反映了重力波的传播受平均流调控,逆背景流传播.分析结果还表明,与台风相关的平流层重力波具有相当大的动量通量,在20km高度位置上估计得到的净纬向动量通量为0.7845×10-3Pa,该值约为驱动QBO现象所需的波动动量通量的26%.

References

[1]  1 Fritts D C, Alexander M J. Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys, 2003, 41, doi: 10.1029/2001RG000106
[2]  2 Sato K. Small-scale wind disturbances observed by the MU radar during the passage of typhoon Kelly. J Atmos Sci, 1993, 50: 518-537
[3]  3 Pfister L, Chan K R, Bui T P, et al. Gravity waves generated by a tropical cyclone during the STEP tropical field program: A case study. J Geophys Res, 1993, 98: 8611-8638
[4]  4 Chane-Ming F, Roff G, Robert L, et al. Gravity wave characteristics over Tromelin Island during the passage of cyclone Hudah. Geophys Res Lett, 2002, 29: 1-4
[5]  5 Chane-Ming F, Chen Z, Roux F. Analysis of gravity-waves produced by intense tropical cyclones. Ann Geophys, 2010, 28: 531-547
[6]  6 Dhaka S K, Takahashi M, Shibagaki Y, et al. Gravity wave generation in the lower stratosphere due to passage of the typhoon 9426 (orchid) observed by the MU radar at Shigaraki (34.85°N, 136.10°E). J Geophys Res, 2003, 108, doi: 10.1029/2003JD003489
[7]  7 Chun H Y, Goh J S, Kim Y H. Characteristics of inertio-gravity waves revealed in rawinsonde data observed in Korea during 20 August to 5 September 2002. J Geophys Res, 2007, 112: D16108
[8]  8 Bauer S J. An apparent ionospheric response to the passage of hurricanes. J Geophys Res, 1958, 63: 265-269
[9]  9 Xiao Z, Xiao S, Hao Y, et al. Morphological features of ionospheric response to typhoon. J Geophys Res, 2007, 112: A04304
[10]  10 毛田, 王劲松, 杨光林, 等. 台风“麦莎”对电离层TEC的影响. 科学通报, 2009, 54, 3858-3863
[11]  23 陈丹, 陈泽宇, 吕达仁. 台风“麦莎”(Matsa)诱发平流层重力波的数值模拟. 中国科学: 地球科学, 2011, 41: 1786-1794
[12]  24 Weare B C, Nasstrom J S. Examples of extended empirical orthogonal function analyses. Mon Weather Rev, 1982, 110: 481-485
[13]  25 施能. 气象科研与预报中的多元分析方法. 第2版. 北京: 气象出版社. 2002. 143-157
[14]  26 靳立亚, 张邦林, 丑纪范. 北半球月平均环流异常垂直结构的综合分析. 大气科学, 1993, 17: 310-318
[15]  27 Svensson C. Empirical orthogonal function analysis of daily rainfall in the upper reaches of the Huai River Basin, China. Theor Appl Climatol, 1999, 62: 147-161
[16]  28 郑彬, 谷德军, 李春晖, 等. 华南前汛期的锋面降水和夏季风降水Ⅱ. 空间分布特征. 大气科学, 2007, 31: 495-504
[17]  29 Kayano M T, Kousky V E. Zonally symmetric and asymmetric features of the tropospheric Madden-Julian oscillation. J Geophys Res, 1998, 103: 13703-13712
[18]  30 Vera C S, Vigliarolo P K, Berbery E H. Cold season synoptic-scale waves over subtropical South America. Mon Weather Rev, 2002, 130: 684-699
[19]  31 Tian B, Waliser D E, Fetzer E J, et al. Vertical moist thermodynamic structure and spatial-temporal evolution of the MJO in AIRS observations. J Atmos Sci, 2006, 63: 2462-2485
[20]  32 Tian B, Waliser D E, Fetzer E J, et al. Vertical moist thermodynamic structure of the Madden-Julian oscillation in atmospheric infrared sounder retrievals: An update and a comparison to ECMWF interim re-analysis. Mon Weather Rev, 2010, 138: 4576-4582
[21]  33 陈烈庭, 宗海锋, 张庆云. 中国东部夏季风雨带季节内变异模态的研究. 大气科学, 2007, 31: 1212-1222
[22]  11 Preusse P, Ern M, Chen Z, et al. Investigation of gravity waves based on satellite measurements. AFO Newsletter, 2003, 5: 3-6
[23]  12 Preusse P, Ern M, Chen Z, et al. Analysis of stratospheric dynamics on small and intermediate scales using CRISTA data (CRISCA). AFO2000 Project 07-ATF-14, final report. 2004
[24]  13 Kim S Y, Chun H Y, Baik J J. A numerical study of gravity waves induced by convection associated with typhoon Rusa. Geophys Res Lett, 2005, 32, doi: 10.1029/2005GL024662
[25]  14 Kim S Y, Chun H Y, Wu D L. A study on stratospheric gravity waves generated by typhoon Ewiniar: Numerical simulations and satellite observations. J Geophys Res, 2009, 114, doi: 10.1029/2009JD011971
[26]  15 Kuester M A, Alexander M J, Ray E A. A model study of gravity waves over hurricane Humberto (2001). J Atmos Sci, 2008, 65: 3231-3246
[27]  16 Fovell R, Durran D, Holton J R. Numerical simulations of convectively generated stratospheric gravity waves. J Atmos Sci, 1992, 49: 1427-1442
[28]  17 Clark T L, Hauf T, Kuettner J P. Convectively forced internal gravity waves: Results from two-dimensional numerical experiments. Q J R Meteorol Soc, 1986, 112: 899-925
[29]  18 Salby M L, Garcia R R. Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior. J Atmos Sci, 1987, 44: 458-498
[30]  19 Pandya R E, Alexander M J. Linear stratospheric gravity waves above convective thermal forcing. J Atmos Sci, 1999, 56: 2434-2446
[31]  20 Alexander M J, Holton J R, Durran D R. The gravity wave response above deep convection in a squall line simulation. J Atmos Sci, 1995, 52: 2212-2226
[32]  21 Piani C, Durran D, Alexander M J, et al. A numerical study of three-dimensional gravity wave triggered by deep tropical convection and their role in the dynamics of the QBO. J Atmos Sci, 2000, 57: 3689-3702
[33]  22 Beres H J, Alexander M J, Holton J R. Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves. J Atmos Sci, 2002, 59: 1805-1824
[34]  34 Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes in Fortran 77: The Art of Scientific Computing. 2rd ed. Cambridge: Cambridge University Press, 1992. 490
[35]  35 Dunkerton T J. The role of gravity waves in the quasi-biennial oscillation. J Geophys Res, 1997, 102: 26053-26076
[36]  36 Baldwin M P, Gray L J, Dunkerton T J, et al. The Quasi-biennial oscillation. Rev Geophys, 2001, 39: 179-229

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133